Geometry or calculus?

Calculus Level 3

0 53 ( tan x 1 cot x + cot x 1 tan x 1 ) sin 2 x cos x d x \large \int_{{0}^{\circ}}^{{53}^{\circ}} \left(\dfrac{\tan x}{1 - \cot x} + \dfrac{\cot x}{1 - \tan x} - 1\right)\dfrac{{\sin}^2 x}{\cos x} \, dx

Evaluate the definite integral above to two decimal places.


The answer is 0.66.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Ashish Menon
Jun 21, 2016

( tan x 1 cot x + cot x 1 tan x 1 ) sin 2 x cos x = ( sin x cos x 1 cos x sin x + cos x sin x 1 sin x cos x 1 ) sin x sin x cos x = ( sin 2 x cos x ( sin x cos x ) + cos 2 x sin x ( cos x sin x ) 1 ) sin x tan x = ( sin 3 x cos 3 x sin x cos x ( sin x cos x ) 1 ) sin x tan x = ( sin 2 x + cos 2 x + sin x cos x sin x cos x 1 ) sin x tan x = ( 1 sin x cos x + 1 1 ) sin x tan x = csc x sec x sin x tan x = sec x tan x So, the question reduces to : 0 ° 53 ° sec x tan x d x = sec x 0 ° 53 ° = sec ( 53 ° ) sec ( 0 ° ) = 0.66 \begin{aligned} \left(\dfrac{\tan x}{1 - \cot x} + \dfrac{\cot x}{1 - \tan x} - 1\right)\dfrac{{\sin}^2 x}{\cos x} & = \left(\dfrac{\frac{\sin x}{\cos x}}{1 - \frac{\cos x}{\sin x}} + \dfrac{\frac{\cos x}{\sin x}}{1 - \frac{\sin x}{\cos x}} - 1\right)\sin x \dfrac{\sin x}{\cos x}\\ \\ & = \left(\dfrac{{\sin}^2 x}{\cos x\left(\sin x - \cos x\right)} + \dfrac{{\cos}^2 x}{\sin x\left(\cos x - \sin x\right)} - 1\right)\sin x \tan x\\ \\ & = \left(\dfrac{{\sin}^3 x - {\cos}^3 x}{\sin x\cos x\left(\sin x - \cos x\right)} - 1\right)\sin x\tan x\\ \\ & = \left(\dfrac{{\sin}^2 x + {\cos}^2 x + \sin x\cos x}{\sin x\cos x} - 1\right)\sin x \tan x\\ \\ & = \left(\dfrac{1}{\sin x\cos x} + 1 - 1\right)\sin x\tan x\\ \\ & = \csc x\sec x\sin x\tan x\\ \\ & = \sec x\tan x\\ \\ \text{So, the question reduces to}:-\\ \\ \int_{{0}^°}^{{53}^°} \sec x\tan x \, dx & = \sec x{\Large \vert}_{{0}^°}^{{53}^°}\\ \\ & = \sec({53}^°) - \sec({0}^°)\\ \\ & = \color{#3D99F6}{\boxed{0.66}} \end{aligned}

One more thing is about the 'upper limit' of the integral , that you should either mention 5 3 53^{\circ}

O R \large \boxed{OR}

You can write it in radians as 53 π 180 \dfrac{53 \pi}{180} , please do correct it !

Rishabh Tiwari - 4 years, 11 months ago

Log in to reply

Well, thanks for the correction, but keep in mind that if nothing is mentioned you should consider radians ;)

Ashish Menon - 4 years, 11 months ago

Log in to reply

Right ! I agree ; but sec 5 3 \sec 53^{\circ} has the value of 5 3 \dfrac {5}{3} and not sec 53 \sec 53 , right ? ; I.e.

sec 5 3 = 5 3 = sec 53 π 180 sec 53 \sec 53^{\circ} = \dfrac {5}{3} = \sec {\dfrac {53 \pi}{180}} \neq \sec {53} , so in the last step , the evaluation will be wrong, Right? You might want to recorrect your solution a bit ? ;-)

Rishabh Tiwari - 4 years, 11 months ago

Log in to reply

@Rishabh Tiwari Oh well the degree sign kk, that was understood but i will modify that typo :) And sec 53 ° \sec{53}^° is not exactly equal to 3 5 \dfrac{3}{5} its an approximation :P

Ashish Menon - 4 years, 11 months ago

Nice solution! (+1) , btw isn't there a typo in the 4th line ?

It should be sin 2 x + cos 2 x + sin x cos x \sin^2 x + \cos^2 x + \sin x \cos x :-)

Rishabh Tiwari - 4 years, 11 months ago

Log in to reply

Well I corretced that. Thanks!

Ashish Menon - 4 years, 11 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...