Get ready Part 3

Calculus Level 3

Evaluate n = 0 cot 1 ( n 2 + n + 1 ) \displaystyle \sum_{n=0}^{\infty} \cot^{-1}(n^2+n+1) to four decimal places.

Notation: cot 1 \cot^{-1} denotes the inverse cotangent function .


The answer is 1.5707.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Oct 24, 2018

Let S n = k = 0 n cot 1 ( k 2 + k + 1 ) \displaystyle S_n = \sum_{k=0}^n \cot^{-1} \left(k^2+k+1\right) . The first few S n S_n appears to claim that S n = cot 1 ( 1 n + 1 ) S_n = \cot^{-1} \left(\dfrac 1{n+1}\right) . Let us prove by induction that the claim is true for all n 0 n \ge 0 .

Proof: For n = 0 n=0 , S 0 = cot 1 1 = cot 1 ( 1 0 + 1 ) S_0 = \cot^{-1} 1 = \cot^{-1} \left(\dfrac 1{0+1}\right) . The claim is true for n = 0 n=0 . Assuming the claim is true for n n , then:

S n + 1 = S n + cot 1 ( ( n + 1 ) 2 + ( n + 1 ) + 1 ) = cot 1 ( 1 n + 1 ) + cot 1 ( n 2 + 3 n + 3 ) = cot 1 ( n 2 + 3 n + 3 n + 1 1 1 n + 1 + n 2 + 3 n + 3 ) = cot 1 ( n 2 + 2 n + 2 n 3 + 4 n 2 + 6 n + 4 ) = cot 1 ( n 2 + 2 n + 2 ( n + 2 ) ( n 2 + 2 n + 2 ) ) = cot 1 ( 1 n + 2 ) \begin{aligned} S_{n+1} & = S_n + \cot^{-1} \left((n+1)^2 + (n+1) + 1\right) \\ & = \cot^{-1} \left(\dfrac 1{n+1}\right) + \cot^{-1} \left(n^2+3n+3\right) \\ & = \cot^{-1} \left(\frac {\frac {n^2+3n+3}{n+1}-1}{\frac 1{n+1} + n^2+3n+3} \right) \\ & = \cot^{-1} \left(\frac {n^2+2n+2}{n^3+4n^2+6n+4} \right) \\ & = \cot^{-1} \left(\frac {n^2+2n+2}{(n+2)(n^2+2n+2)} \right) \\ & = \cot^{-1} \left(\frac 1{n+2} \right) \end{aligned}

Therefore, the claim is true for n + 1 n+1 and true for all n 0 n \ge 0 .

Then lim n S n = lim n cot 1 ( 1 n + 1 ) = cot 1 ( 0 ) = π 2 1.5708 \displaystyle \lim_{n \to \infty} S_n = \lim_{n \to \infty} \cot^{-1} \left(\frac 1{n+1}\right) = \cot^{-1}(0) = \frac \pi 2 \approx \boxed{1.5708} .

Why n 0 n \le 0 instead of n 1 n \ne -1

Gia Hoàng Phạm - 2 years, 7 months ago

Log in to reply

What is a a ?

Chew-Seong Cheong - 2 years, 7 months ago

Log in to reply

Sorry,the typo is now fixed.

Gia Hoàng Phạm - 2 years, 7 months ago

Log in to reply

@Gia Hoàng Phạm FUCK ME PLEASE

INFO WEB - 8 months, 2 weeks ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...