An infinite summation of Totient.

n = 1 ϕ ( n ) n 4 = S \sum_{n=1}^{\infty} \frac{\phi(n)}{n^{4}} = S

S S can be written in the format given below . S = ζ ( a ) b π c . S = \zeta (a) \cdot \dfrac{b}{\pi ^{c}}.

Submit your answer as a + b + c a+b+c

Notation : ζ ( ) \zeta(\cdot) denotes the Riemann zeta function .


The answer is 97.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

We have by Drichlet Convolution ( ϕ I ) ( n ) = n (\phi*I)(n) = n

I ( n ) I(n) Denotes the Identity Function .

P r o o f \mathbf{Proof }

( ϕ I ) ( n ) = d n ϕ ( d ) I ( n d ) = d n ϕ ( d ) = n (\displaystyle\phi*I)(n) = \sum_{d|n} \phi(d)I(\frac{n}{d}) = \sum_{d|n}\phi(d) = n

Of course it is a well known identity that d n ϕ ( d ) = n \text{Of course it is a well known identity that }\sum_{d|n}\phi(d) = n

Next we have :

n N ( f g ) ( n ) n s = n N f ( n ) n s n N g ( n ) n s \displaystyle\sum_{n\in\mathbb{N}} \frac{(f*g)(n)}{n^s} = \sum_{n\in\mathbb{N}} \frac{f(n)}{n^s} \sum_{n\in\mathbb{N}} \frac{g(n)}{n^s}

P r o o f \mathbf{Proof}

We may write the summation as :

n N ( f g ) ( n ) n s = n N n = d 1 d 2 f ( d 1 ) d 1 s f ( d 2 ) d 2 s \displaystyle\sum_{n\in\mathbb{N}} \frac{(f*g)(n)}{n^s}=\sum_{n\in\mathbb{N}} \sum_{n=d_1d_2} \frac{f(d_1)}{{d_1}^s}\frac{f(d_2)}{{d_2}^s}

Note that every ordered pair ( d 1 , d 2 ) (d_1,d_2) occurs exactly once namely n = d 1 d 2 n=d_1d_2

So the above summation can be rewritten as :

n N ( f g ) ( n ) n s = d 1 N f ( d 1 ) d 1 s d 1 N f ( d 2 ) d 2 s \displaystyle \sum_{n\in\mathbb{N}} \frac{(f*g)(n)}{n^s}=\sum_{d_1\in\mathbb{N}} \frac{f(d_1)}{{d_1}^s} \sum_{d_1\in\mathbb{N}} \frac{f(d_2)}{{d_2}^s}

Thus we have

n N ( f g ) ( n ) n s = n N f ( n ) n s n N g ( n ) n s \displaystyle \sum_{n\in\mathbb{N}} \frac{(f*g)(n)}{n^s} = \sum_{n\in\mathbb{N}} \frac{f(n)}{n^s} \sum_{n\in\mathbb{N}} \frac{g(n)}{n^s} .

Here f ( n ) = ϕ ( n ) f(n)=\phi(n) & g ( n ) = I ( n ) g(n)=I(n)

n N ( ϕ I ) ( n ) n n s ζ ( s 1 ) = n N ϕ ( n ) n s n N I ( n ) 1 n s ζ ( s ) \displaystyle\sum_{n\in\mathbb{N}} \underbrace{\frac{\underbrace{(\phi*I)(n)}_{\text{n}}}{n^s}}_{\zeta(s-1)} = \sum_{n\in\mathbb{N}} \frac{\phi(n)}{n^s} \sum_{n\in\mathbb{N}} \underbrace{\frac{\underbrace{I(n)}_{\text{1}}}{n^s}}_{\zeta(s)}

n N ϕ ( n ) n s = ζ ( s 1 ) ζ ( s ) \displaystyle\implies \sum_{n\in\mathbb{N}} \frac{\phi(n)}{n^s} = \frac{\zeta(s-1)}{\zeta(s)}

n = 1 ϕ ( n ) n 4 = ζ ( 4 1 ) ζ ( 4 ) = 90 π 4 ζ ( 3 ) \displaystyle\sum_{n=1}^{\infty} \frac{\phi(n)}{n^4} = \frac{\zeta{(4-1)}}{\zeta{(4)}}=\frac{90}{\pi^4}\zeta{(3)}

a + b + c = 97 \boxed{a+b+c=97}

Yep ,.... Explain it more

A Former Brilliant Member - 5 years, 1 month ago

Log in to reply

Maybe it's fine now

Aditya Narayan Sharma - 5 years, 1 month ago

Log in to reply

Woah nice...it covered every minute point...+1

A Former Brilliant Member - 5 years, 1 month ago

Log in to reply

@A Former Brilliant Member Ya thanks ! But why the title ? Do you really mean it :-(

Aditya Narayan Sharma - 5 years, 1 month ago

Log in to reply

@Aditya Narayan Sharma Yep I mean it...

A Former Brilliant Member - 5 years, 1 month ago
Jatin Yadav
May 16, 2016

Let F ( s ) = n = 1 ϕ ( n ) n s F(s) = \displaystyle \sum_{n=1}^{\infty} \dfrac{\phi(n)}{n^s}

Using ϕ ( n ) = d n μ ( d ) n d \phi(n) = \displaystyle \sum_{d|n} \mu(d) \dfrac{n}{d} , and reversing the order of summation , we have:

F ( s ) = d = 1 μ ( d ) d n : d n 1 n s 1 F(s) = \displaystyle \sum_{d=1}^{\infty} \dfrac{\mu(d)}{d} \sum_{n:d|n}\dfrac{1}{n^{s-1}}

Substituting n = m d n = m d ,

F ( s ) = d = 1 μ ( d ) d s ζ ( s ) = ζ ( s 1 ) ζ ( s ) F(s) = \displaystyle \sum_{d=1}^{\infty} \dfrac{\mu(d)}{d^s} \zeta(s) = \boxed{\dfrac{\zeta(s-1)}{\zeta(s)}}

Otto Bretscher
Apr 21, 2016

S = p k = 0 ϕ ( p k ) p 4 k = p ( 1 + k = 1 p 1 p 3 k + 1 ) = p p 4 1 p 4 p = p 1 1 p 4 1 1 p 3 = ζ ( 3 ) ζ ( 4 ) = 90 ζ ( 3 ) π 4 S=\prod_{p}\sum_{k=0}^{\infty}\frac{\phi(p^k)}{p^{4k}}=\prod_{p}\left(1+\sum_{k=1}^{\infty}\frac{p-1}{p^{3k+1}}\right)=\prod_{p}\frac{p^4-1}{p^4-p}=\prod_{p}\frac{1-\frac{1}{p^4}}{1-\frac{1}{p^3}}=\frac{\zeta(3)}{\zeta(4)}=\frac{90\zeta(3)}{\pi^4} giving 97 \boxed{97}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...