Happy Birthday Rajdeep!

Calculus Level 5

1 / 3 1 / 3 x 2 ( 1 x 2 ) ( e x + 1 ) ( 1 + x 2 ) 4 d x \large \int_{-1/\sqrt{3}}^{1/\sqrt{3}} \dfrac{x^2(1-x^2)}{(e^x+1)(1+x^2)^4} \, dx

If the above integral is equal to a b \dfrac{\sqrt{a}}{b} , where a a and b b are positive integers with a a square-free, find a + b a+b .


This problem is original and was inspired by one of Trevor B's problems. This problem is dedicated to Rajdeep on his birthday.


The answer is 67.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

5 solutions

Rishabh Jain
Feb 20, 2016

I = 1 / 3 1 / 3 x 2 ( 1 x 2 ) ( e x + 1 ) ( 1 + x 2 ) 4 d x \large \mathfrak{I}= \int_{-1/\sqrt{3}}^{1/\sqrt{3}} \dfrac{x^2(1-x^2)}{(e^x+1)(1+x^2)^4} \ dx \ I = 1 / 3 1 / 3 e x ( x 2 ( 1 x 2 ) ( e x + 1 ) ( 1 + x 2 ) 4 ) d x \mathfrak{I}= \int_{-1/\sqrt{3}}^{1/\sqrt{3}} e^x(\dfrac{x^2(1-x^2)}{(e^x+1)(1+x^2)^4} )\ dx \ ( a b f ( x ) d x = a b f ( a + b x ) d x ) \small{(\because\color{#D61F06}{\int_{a}^{b}f(x)\, dx=\int_{a}^{b}f(a+b-x)\, dx})} 2 I = 1 / 3 1 / 3 x 2 ( 1 x 2 ) ( 1 + x 2 ) 4 d x 2\mathfrak{I}= \int_{-1/\sqrt{3}}^{1/\sqrt{3}} \dfrac{x^2(1-x^2)}{(1+x^2)^4} \ dx \ I = 0 1 / 3 x 2 ( 1 x 2 ) ( 1 + x 2 ) 4 d x \Rightarrow \mathfrak{I}=\int_{0}^{1/\sqrt{3}} \dfrac{x^2(1-x^2)}{(1+x^2)^4} \ dx \ Substitute x = t a n y x=tany and use tan y = sin y cos y \tan y=\frac{\sin y}{\cos y} and sec y = 1 cos y \sec y=\frac{1}{\cos y} followed by 2 sin y cos y = sin 2 y 2 \sin y\cos y=\sin 2y and cos 2 y sin 2 y = cos 2 y \cos^2 y-\sin^2 y=\cos 2y . I = 1 4 0 π 6 ( sin 2 2 y ) ( cos 2 y ) d y \large \mathfrak{I}=\dfrac{1}{4} \int_{0}^{\frac{\pi}{6}}(\sin^2 2y ) (\cos 2y) \,dy = 1 8 ( ( sin 2 y ) 3 3 ) 0 π 6 \large =\dfrac{1}{8}(\dfrac{(\sin 2 y)^3}{3})|_{\small{0}}^{\small{\frac{\pi}{6}}} = 3 64 \Large =\dfrac{\sqrt 3}{64} 3 + 64 = 67 \huge \therefore ~3+64=\boxed{\color{#007fff}{67}}

Its pretty amazing how the community comes up with variety of solutions , Great! +1

Nihar Mahajan - 5 years, 3 months ago

I have also posted one solution , you might check it :)

Nihar Mahajan - 5 years, 3 months ago

Nice solution!! Alternate: Just take out x common from denom .See my solution.

Gautam Sharma - 5 years, 3 months ago
Gautam Sharma
Feb 20, 2016

I = 1 / 3 1 / 3 x 2 ( 1 x 2 ) ( e x + 1 ) ( 1 + x 2 ) 4 d x \large \mathfrak{I}= \int_{-1/\sqrt{3}}^{1/\sqrt{3}} \dfrac{x^2(1-x^2)}{(e^x+1)(1+x^2)^4} \ dx \ Same method as shown by Rishabh above this can be simplified to: I = 0 1 / 3 x 2 ( 1 x 2 ) ( 1 + x 2 ) 4 d x \Rightarrow \mathfrak{I}=\int_{0}^{1/\sqrt{3}} \dfrac{x^2(1-x^2)}{(1+x^2)^4} \ dx \

I = 0 1 / 3 ( 1 x 2 1 ) ( 1 x + x ) 4 d x \Rightarrow \mathfrak{I}=\int_{0}^{1/\sqrt{3}} \dfrac{(\frac{1}{x^2}-1)}{(\frac{1}{x}+x)^4} \ dx \

Let x + 1 x = t x+\frac{1}{x} =t

( 1 1 x 2 ) d x = d t (1-\frac{1}{x^2})dx =dt I = 0 1 / 3 1 t 4 d t \Rightarrow \mathfrak{I}=\int_{0}^{1/\sqrt{3}}\frac{-1}{t^4}dt So I = 1 3 ( x + 1 x ) 3 \Rightarrow \mathfrak{I}=\frac{1}{3(x+\frac{1}{x})^3} putting limits we can get the answer

Moderator note:

It would be helpful to explain the steps. How does the second line follow from the first? Someone could interpret it as "He forgot to write in the denominator".

Its pretty amazing how the community comes up with variety of solutions , Great! +1

Nihar Mahajan - 5 years, 3 months ago

Same method GM!

Adarsh Kumar - 5 years, 3 months ago

Same method! +1

Rohit Ner - 5 years, 3 months ago

First of all, Happy Birthday @Rajdeep Dhingra :)

Now, let I = 1 3 1 3 x 2 ( 1 x 2 ) ( e x + 1 ) ( 1 + x 2 ) 4 d x I=\int _{ \frac { -1 }{ \sqrt { 3 } } }^{ \frac { 1 }{ \sqrt { 3 } } }{ \frac { { x }^{ 2 }(1-{ x }^{ 2 }) }{ ({ e }^{ x }+1){ (1+{ x }^{ 2 }) }^{ 4 } } } dx

Using the property: a b f ( x ) d x = a b f ( a + b x ) d x \int _{ a }^{ b }{ f(x) } dx\quad =\quad \int _{ a }^{ b }{ f(a+b-x) } dx , we get

I = 1 3 1 3 x 2 ( 1 x 2 ) ( e x + 1 ) ( 1 + x 2 ) 4 d x = 1 3 1 3 x 2 ( 1 x 2 ) e x ( e x + 1 ) ( 1 + x 2 ) 4 d x I=\int _{ \frac { -1 }{ \sqrt { 3 } } }^{ \frac { 1 }{ \sqrt { 3 } } }{ \frac { { x }^{ 2 }(1-{ x }^{ 2 }) }{ ({ e }^{ -x }+1){ (1+{ x }^{ 2 }) }^{ 4 } } } dx\quad =\int _{ \frac { -1 }{ \sqrt { 3 } } }^{ \frac { 1 }{ \sqrt { 3 } } }{ \frac { { x }^{ 2 }(1-{ x }^{ 2 }){ e }^{ x } }{ ({ e }^{ x }+1){ (1+{ x }^{ 2 }) }^{ 4 } } } dx

Adding both the values for I I , we get:

2 I = 1 3 1 3 x 2 ( 1 x 2 ) ( 1 + x 2 ) 4 d x 2I\quad =\int _{ \frac { -1 }{ \sqrt { 3 } } }^{ \frac { 1 }{ \sqrt { 3 } } }{ \frac { { x }^{ 2 }(1-{ x }^{ 2 }) }{ { (1+{ x }^{ 2 }) }^{ 4 } } } dx

Now, substituting x = tan θ x=\tan { \theta } and d x = sec 2 θ d θ dx=\sec ^{ 2 }{ \theta } d\theta , we can write 2 I 2I as:

2 I = π 6 π 6 tan 2 θ ( 1 tan 2 θ ) ( 1 + tan 2 θ ) 4 sec 2 θ d θ 2I\quad =\int _{ \frac { -\pi }{ 6 } }^{ \frac { \pi }{ 6 } }{ \frac { \tan ^{ 2 }{ \theta } (1-\tan ^{ 2 }{ \theta } ) }{ { (1+\tan ^{ 2 }{ \theta } ) }^{ 4 } } } \sec ^{ 2 }{ \theta } d\theta

Using the identity: 1 + tan 2 θ = sec 2 θ 1+\tan ^{ 2 }{ \theta } =\sec ^{ 2 }{ \theta } and 1 tan 2 θ = cos 2 θ cos 2 θ 1-\tan ^{ 2 }{ \theta } =\frac { \cos { 2\theta } }{ \cos ^{ 2 }{ \theta } } , we get:

2 I = π 6 π 6 tan 2 θ cos 2 θ cos 2 θ ( 1 + tan 2 θ ) 3 d θ 2 I = π 6 π 6 sin 2 θ cos 2 θ cos 2 θ cos 2 θ ( sec 2 θ ) 3 d θ 2I\quad =\int _{ \frac { -\pi }{ 6 } }^{ \frac { \pi }{ 6 } }{ \frac { \tan ^{ 2 }{ \theta } \frac { \cos { 2\theta } }{ \cos ^{ 2 }{ \theta } } }{ { (1+\tan ^{ 2 }{ \theta } ) }^{ 3 } } } d\theta \\ \Rightarrow \quad 2I\quad =\int _{ \frac { -\pi }{ 6 } }^{ \frac { \pi }{ 6 } }{ \frac { \frac { \sin ^{ 2 }{ \theta } }{ \cos ^{ 2 }{ \theta } } \frac { \cos { 2\theta } }{ \cos ^{ 2 }{ \theta } } }{ ({ \sec ^{ 2 }{ \theta } ) }^{ 3 } } } d\theta

Further simplifying, we get:

2 I = π 6 π 6 sin 2 θ cos 2 θ cos 2 θ cos 2 θ cos 6 θ d θ 2 I = π 6 π 6 ( sin 2 θ cos 2 θ ) cos 2 θ d θ 2 I = 1 4 π 6 π 6 sin 2 2 θ cos 2 θ d θ 2 I = 1 4 1 2 sin 3 2 θ 3 ] π 6 π 6 I = 1 48 ( sin 3 π 3 sin 3 π 3 ) I = 2 48 3 3 8 = 3 64 2I\quad =\int _{ \frac { -\pi }{ 6 } }^{ \frac { \pi }{ 6 } }{ \frac { \sin ^{ 2 }{ \theta } }{ \cos ^{ 2 }{ \theta } } \frac { \cos { 2\theta } }{ \cos ^{ 2 }{ \theta } } \cos ^{ 6 }{ \theta } } d\theta \\ \Rightarrow \quad 2I\quad =\int _{ \frac { -\pi }{ 6 } }^{ \frac { \pi }{ 6 } }{ (\sin ^{ 2 }{ \theta } \cos ^{ 2 }{ \theta } )\cos { 2\theta } } d\theta \\ \Rightarrow \quad 2I\quad =\frac { 1 }{ 4 } \int _{ \frac { -\pi }{ 6 } }^{ \frac { \pi }{ 6 } }{ \sin ^{ 2 }{ 2\theta } \cos { 2\theta } } d\theta \\ \Rightarrow \quad 2I\quad =\frac { 1 }{ 4 } \frac { 1 }{ 2 } { \frac { \sin ^{ 3 }{ 2\theta } }{ 3 } }]_{ \frac { -\pi }{ 6 } }^{ \frac { \pi }{ 6 } }\\ \Rightarrow \quad I\quad =\frac { 1 }{ 48 } (\sin ^{ 3 }{ \frac { \pi }{ 3 } } -\sin ^{ 3 }{ \frac { -\pi }{ 3 } ) } \\ \Rightarrow \quad I\quad =\frac { 2 }{ 48 } \frac { 3\sqrt { 3 } }{ 8 } =\frac { \sqrt { 3 } }{ 64 }

Now, comparing, we get a = 3 a=3 , and b = 64 b=64 . So, the answer, a + b = 67 a+b=67 . :)

Moderator note:

Good solution. You can improve it by adding the motivation behind the steps that were chosen. IE We decided to use the integration trick of a b f ( x ) d x = a b f ( a + b x ) d x \int _{ a }^{ b }{ f(x) } dx\quad =\quad \int _{ a }^{ b }{ f(a+b-x) } dx , because 1 e x + 1 + 1 e x + 1 = 1 \frac{ 1 } { e^x + 1 } + \frac{1}{ e^{-x} + 1 } = 1 .

I have also posted one solution , you might check it :)

Nihar Mahajan - 5 years, 3 months ago

Same solution! :D

A Former Brilliant Member - 5 years, 3 months ago

Log in to reply

Lol, yeah. I was surprised too, when he posted the same thing! :D

A Former Brilliant Member - 5 years, 3 months ago

Log in to reply

I think this would be the most common approach. I did this too. And then there's the other approach by @Gautam Sharma

A Former Brilliant Member - 5 years, 3 months ago

Log in to reply

@A Former Brilliant Member Yep! I saw that too!

A Former Brilliant Member - 5 years, 3 months ago

Its pretty amazing how the community comes up with variety of solutions , Great! +1

Nihar Mahajan - 5 years, 3 months ago
Nihar Mahajan
Feb 20, 2016

We use Weierstrass substitution where x = tan y 2 y = 2 arctan ( x ) x=\tan\dfrac{y}{2} \Rightarrow y=2\arctan(x) and then sin x = 2 x 1 + x 2 \sin x=\dfrac{2x}{1+x^2} , cos x = 1 x 2 1 + x 2 \cos x=\dfrac{1-x^2}{1+x^2} , d y = 2 1 + x 2 d x dy=\dfrac{2}{1+x^2} dx . Now note that 1 / 3 1 / 3 x 2 ( 1 x 2 ) ( e x + 1 ) ( 1 + x 2 ) 4 d x \displaystyle\int_{-1/\sqrt{3}}^{1/\sqrt{3}} \dfrac{x^2(1-x^2)}{(e^x+1)(1+x^2)^4} \, dx can be written as:

1 8 1 / 3 1 / 3 1 1 + e x × 4 x 2 ( 1 + x 2 ) 2 × 1 x 2 1 + x 2 × 2 1 + x 2 d x \dfrac{1}{8}\int_{-1/\sqrt{3}}^{1/\sqrt{3}} \dfrac{1}{1+e^x} \times \dfrac{4x^2}{(1+x^2)^2} \times \dfrac{1-x^2}{1+x^2} \times \dfrac{2}{1+x^2} dx

Now in this integral , as x = 1 / 3 , y = π / 3 x=1/\sqrt{3} \ , \ y=\pi/3 and x = 1 / 3 , y = π / 3 x=-1/\sqrt{3} \ , \ y=-\pi/3 and we change the limits accordingly.Using Weierstrass substitution we transform it to:

1 8 π / 3 π / 3 sin 2 y cos y 1 + e y d y \dfrac{1}{8}\int_{-\pi/3}^{\pi/3} \dfrac{\sin^2 y\cos y}{1+e^y} \ dy

Now since sin 2 y cos y 1 + e y \dfrac{\sin^2 y\cos y}{1+e^y} is an even function we use the property a a E ( x ) e x + 1 d x = 0 a E ( x ) d x \displaystyle\int\limits_{-a}^a\frac{E(x)}{e^x+1}\,\mathrm dx=\int_0^a E(x)\,\mathrm dx and then we have:

1 8 0 π / 3 sin 2 y cos y d y \dfrac{1}{8}\int_{0}^{\pi/3} \sin^2 y\cos y \ dy

Now using the substitution u = sin y u=\sin y , d u = cos y d y du=\cos y dy and required changes in limits , we have:

1 8 0 3 / 2 u 2 d u \dfrac{1}{8}\int_{0}^{\sqrt{3}/2} u^2 \ du

= 1 8 × u 3 3 0 3 / 2 = 3 3 / 2 64 × 3 = 3 64 =\dfrac{1}{8} \times \dfrac{u^3}{3} \bigg|_{0}^{\sqrt{3}/2}=\dfrac{3^{3/2}}{64\times 3}=\boxed{\dfrac{\sqrt{3}}{64}}

Hence , a = 3 , b = 64 , a + b = 3 + 64 = 67 a=3 \ , \ b=64 \ , \ a+b=3+64=\boxed{67}

Its pretty amazing how the community comes up with variety of solutions , Great! + 6 π 2 ζ ( 2 ) \frac{6}{\pi ^{2}} \zeta (2)

Harsh Shrivastava - 5 years, 3 months ago

Log in to reply

Thanks.. :)

Nihar Mahajan - 5 years, 3 months ago

Its pretty amazing how the community comes up with variety of solutions , Great! +1....:P

A Former Brilliant Member - 5 years, 3 months ago

Log in to reply

Haha , thank u

Nihar Mahajan - 5 years, 3 months ago
汶良 林
Feb 22, 2016

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...