Happy New Year - 2

Algebra Level 5

Find the possible value of k k for which the equation m = 1 k ( x + m 1 ) ( x + m ) = 10 k \displaystyle\sum_{m=1}^k (x + m - 1)(x + m) = 10k has a solution α \alpha and α + 1 \alpha + 1 for some α \alpha .


The answer is 11.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Amrit Anand
Jan 1, 2016

This Problem is same as;
Keep it up ; By....Akshat Sharda,

Yeah. There are many problems which are similar to each other throughout brilliant

Shreyash Rai - 5 years, 5 months ago
Ayush Verma
Jan 13, 2016

( y 1 ) y = 3 ( y 1 ) y 3 = y 3 ( y 1 ) 3 3 1 3 10 k = 1 3 [ m = 1 k { ( x + m ) 3 ( x + m 1 ) 3 } m = 1 k 1 ] 10 k = 1 3 [ ( x + k ) 3 x 3 k ] = 1 3 [ 3 k x 2 + 3 k 2 x + k 3 k ] 3 x 2 + 3 k x + k 2 31 = 0 & ( α β ) 2 = ( α + β ) 2 4 α β = k 2 4 k 2 31 3 = k 2 + 124 3 1 = k 2 + 124 3 k = 11 \left( y-1 \right) y=\cfrac { 3\left( y-1 \right) y }{ 3 } =\cfrac { { y }^{ 3 }{ -\left( y-1 \right) }^{ 3 } }{ 3 } -\cfrac { 1 }{ 3 } \\ \\ \therefore 10k=\cfrac { 1 }{ 3 } \left[ \sum _{ m=1 }^{ k }{ \left\{ { \left( x+m \right) }^{ 3 }{ -\left( x+m-1 \right) }^{ 3 } \right\} - } \sum _{ m=1 }^{ k }{ 1 } \right] \\ \\ \Rightarrow 10k=\cfrac { 1 }{ 3 } \left[ { \left( x+k \right) }^{ 3 }{ -x^{ 3 } }-k \right] =\cfrac { 1 }{ 3 } \left[ 3k{ x }^{ 2 }+3{ k }^{ 2 }x+{ k }^{ 3 }-k \right] \\ \\ \Rightarrow 3{ x }^{ 2 }+3kx+{ k }^{ 2 }-31=0\\ \\ \& \quad { \left( \alpha -\beta \right) }^{ 2 }={ \left( \alpha +\beta \right) }^{ 2 }-4\alpha \beta ={ k }^{ 2 }-4\cfrac { { k }^{ 2 }-31 }{ 3 } =\cfrac { { -k }^{ 2 }+124 }{ 3 } \\ \\ \Rightarrow 1=\cfrac { { -k }^{ 2 }+124 }{ 3 } \Rightarrow k=11

Correction k = 11 k=11

Rishik Jain - 5 years, 5 months ago

Log in to reply

Thanks,edited.

But why -11 is not the answer?Am i missing something?

Ayush Verma - 5 years, 5 months ago

Log in to reply

k k is the upper bound in the summation. Hence it cannot be negative.

Rishik Jain - 5 years, 5 months ago

Log in to reply

@Rishik Jain Thanks,once again.Silly mistakes

Ayush Verma - 5 years, 5 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...