Hermite, Ostrogradsky

Calculus Level 5

0 2 x 5 + 2 x 4 + 4 x 3 2 x 2 x ( x + 1 ) 2 ( x 2 + 1 ) 2 d x \displaystyle \int_{0}^2 \frac{x^5 + 2x^4 + 4x^3 - 2x^2 - x}{(x + 1)^2(x^2 + 1)^2} \space dx

The above integral can be written A B + ln ( C ) + arctan ( D ) - \dfrac{A}{B} + \ln(C) + \arctan(D) , where A A and B B are coprime positive integers and C C and D D are positive integers. Submit A + B + C + D A + B + C + D .


The answer is 48.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Sep 30, 2016

As suggested by the title of the problem, the problem can be solved by Ostrogradsky method . According to the method, if P ( x ) P (x) and Q ( x ) Q (x) are polynomials with real coefficients and P ( x ) / Q ( x ) P (x) / Q (x) is a proper fraction, and Q ( x ) Q (x) has multiple roots, then

P ( x ) Q ( x ) d x = P 1 ( x ) Q 1 ( x ) + P 2 ( x ) Q 2 ( x ) d x \int \frac {P(x)}{Q(x)} dx = \frac {P_1(x)}{Q_1(x)} + \int \frac {P_2(x)}{Q_2(x)} dx

where Q 1 ( x ) Q_1(x) is the greatest common divisor of Q ( x ) Q (x) and its derivative Q ( x ) Q' (x) , while Q 2 ( x ) = Q ( x ) / Q 1 ( x ) Q_2(x) = Q (x) / Q_1(x) . Undetermined coefficients of he polynomials P 1 ( x ) P_1(x) and P 2 ( x ) P_2(x) , whose degrees are one less than of the polynomials Q 1 ( x ) Q_1(x) and Q 2 ( x ) Q_2(x) respectively, we calculate by deriving the above integral identity.

In this problem, P ( x ) = x 5 + 2 x 4 + 4 x 3 2 x 2 x P(x) = x^5+2x^4+4x^3-2x^2-x ; Q ( x ) = ( x + 1 ) 2 ( x 2 + 1 ) 2 Q(x) = (x+1)^2(x^2+1)^2 , Q ( x ) = 2 ( x + 1 ) ( x 2 + 1 ) 2 + 4 x ( x + 1 ) 2 ( x 2 + 1 ) Q'(x) = 2(x+1)(x^2+1)^2 + 4x(x+1)^2(x^2+1) , then gcd ( Q ( x ) , Q ( x ) ) = Q 1 ( x ) = ( x + 1 ) ( x 2 + 1 ) \gcd (Q(x),Q'(x)) = Q_1(x) = (x+1)(x^2+1) and Q 2 ( x ) = Q ( x ) / Q 1 ( x ) = ( x + 1 ) ( x 2 + 1 ) = Q 1 ( x ) Q_2(x) = Q(x)/Q_1(x) =(x+1)(x^2+1)=Q_1(x) . Now, let P 1 ( x ) = A x 2 + B x + C P_1(x) = Ax^2+Bx+C and P 2 ( x ) = D x 2 + E x + F P_2(x) =Dx^2+ Ex+F . Then, we have:

x 5 + 2 x 4 + 4 x 3 2 x 2 x ( x + 1 ) 2 ( x 2 + 1 ) 2 d x = A x 2 + B x + C ( x + 1 ) ( x 2 + 1 ) + D x 2 + E x + F ( x + 1 ) ( x 2 + 1 ) d x Differentiate up and down wrt x x 5 + 2 x 4 + 4 x 3 2 x 2 x ( x + 1 ) 2 ( x 2 + 1 ) 2 = ( 2 A x + B ) ( x + 1 ) ( x 2 + 1 ) ( A x 2 + B x + C ) ( 3 x 2 + 2 x + 1 ) ( x + 1 ) 2 ( x 2 + 1 ) 2 + D x 2 + E x + F ( x + 1 ) ( x 2 + 1 ) x 5 + 2 x 4 + 4 x 3 2 x 2 x = ( D x 2 + ( 2 A + E ) x + B + F ) ( x + 1 ) ( x 2 + 1 ) ( A x 2 + B x + C ) ( 3 x 2 + 2 x + 1 ) \begin{aligned} \int \frac {x^5+2x^4+4x^3-2x^2-x}{(x+1)^2(x^2+1)^2} dx & = \frac {Ax^2+Bx+C}{(x+1)(x^2+1)} + \int \frac {Dx^2+ Ex+F}{(x+1)(x^2+1)} dx \quad \quad \small \color{#3D99F6}{\text{Differentiate up and down wrt }x} \\ \frac {x^5+2x^4+4x^3-2x^2-x}{(x+1)^2(x^2+1)^2} & = \frac {(2Ax+B)(x+1)(x^2+1)-(Ax^2+Bx+C)(3x^2+2x+1)}{(x+1)^2(x^2+1)^2} + \frac {Dx^2+ Ex+F}{(x+1)(x^2+1)} \\ x^5+2x^4+4x^3-2x^2-x & = (Dx^2+ (2A+E)x+B+F)(x+1)(x^2+1)-(Ax^2+Bx+C)(3x^2+2x+1) \end{aligned}

Solving for A A , B B , C C , D D , E E and F F (see below), we get A = 0 , B = 0 , C = 2 , D = 1 , E = 1 , F = 2 A = 0, \ B = 0, \ C = 2, \ D = 1, \ E =1, \ F = 2 . Therefore,

I = 0 2 x 5 + 2 x 4 + 4 x 3 2 x 2 x ( x + 1 ) 2 ( x 2 + 1 ) 2 d x = 2 ( x + 1 ) ( x 2 + 1 ) 0 2 + 0 2 x 2 + x + 2 ( x + 1 ) ( x 2 + 1 ) d x By partial fractions = 28 15 + 0 2 ( 1 x + 1 + 1 x 2 + 1 ) d x = 28 15 + [ ln ( x + 1 ) + tan 1 x ] 0 2 = 28 15 + ln 3 + tan 1 2 \begin{aligned} I & = \int_0^2 \frac {x^5+2x^4+4x^3-2x^2-x}{(x+1)^2(x^2+1)^2} dx \\ & = \frac 2{(x+1)(x^2+1)}\bigg|_0^2 + \color{#3D99F6}{\int_0^2 \frac {x^2+x+2}{(x+1)(x^2+1)} dx} & \small \color{#3D99F6}{\text{By partial fractions}} \\ & = - \frac {28}{15} + \color{#3D99F6}{\int_0^2 \left( \frac 1{x+1} + \frac 1{x^2+1} \right) dx} \\ & = - \frac {28}{15} + \bigg[ \ln (x+1) + \tan^{-1} x \bigg]_0^2 \\ & = - \frac {28}{15} + \ln 3 + \tan^{-1} 2 \end{aligned}

A + B + C + D = 28 + 15 + 3 + 2 = 48 \implies A+B+C+D = 28+15+3+2 = \boxed{48}


Solving for A A , B B , C C , D D , E E and F F

Equating the coefficient of x 5 x^5 , D = 1 . . . ( 1 ) \implies D = 1 \ \ ...(1) .

Let x = 1 x=-1 1 + 2 4 2 + 1 = 0 ( A B + C ) ( 3 2 + 1 ) A B + C = 2 . . . ( 2 ) \implies -1+2-4-2+1 = 0 - (A-B+C)(3-2+1) \implies A-B+C = 2 \ \ ...(2) .

Let x = 0 x=0 0 = B + F C B C + F = 0 . . . ( 3 ) \implies 0 = B+F-C \implies B-C+F = 0 \ \ ...(3) .

Let x = i x=i

i + 2 4 i + 2 i = 0 ( A + B i + C ) ( 3 + 2 i + 1 ) 4 4 i = ( A + B i + C ) ( 2 2 i ) 2 = A + B i + C B = 0 . . . ( 4 ) A + C = 2 . . . ( 5 ) \begin{aligned} \implies i+2-4i+2-i & = 0 - (-A+Bi+C)(-3+2i+1) \\ 4-4i & = (-A+Bi+C)(2-2i) \\ 2 & = -A+Bi+C \\ \implies B & = 0 \ \ ...(4) \\ -A+C & = 2 \ \ ...(5) \end{aligned}

( 2 ) + ( 5 ) : B + 2 C = 0 ( 4 ) + 2 C = 4 C = 2 . . . ( 6 ) \begin{aligned} (2)+(5): \ \ -B+2C = -0_{\color{#3D99F6}{(4)}} + 2C = 4 \implies C = 2 \ \ ...(6) \end{aligned}

( 5 ) : A + C = A + 2 ( 6 ) = 2 A = 0 . . . ( 7 ) \begin{aligned} (5): \ \ -A+C = -A+2_{\color{#3D99F6}{(6)}} = 2 \implies A = 0 \ \ ...(7) \end{aligned}

( 3 ) : B C + F = 0 ( 4 ) 2 ( 6 ) + F = 0 F = 2 . . . ( 8 ) \begin{aligned} (3): \ \ B-C+F = 0_{\color{#3D99F6}{(4)}} -2_{\color{#3D99F6}{(6)}} +F = 0 \implies F = 2 \ \ ...(8) \end{aligned}

Let x = 1 x=1

1 + 2 + 4 2 1 = ( 1 + E + 2 ) ( 2 ) ( 2 ) 2 ( 6 ) 4 = 4 E + 12 12 E = 1 \begin{aligned} \implies 1+2+4-2-1 & = (1+E+2)(2)(2) -2(6) \\ 4 & = 4E + 12 - 12 \\ \implies E & = 1 \end{aligned}

Wow,(+1) great and big work! Exactly what I had on mind... @Pi Han Goh , Chew wrote the solution... I think this is a good example for starting treating with this method, very well developed by Chew..

Guillermo Templado - 4 years, 8 months ago

0 2 x 5 + 2 x 4 + 4 x 3 2 x 2 x ( 1 + x ) 2 ( 1 + x 2 ) 2 d x = 0 2 ( x 1 ) x ( x + 1 ) ( x 2 + 1 ) + 2 x 2 ( x + 1 ) 2 4 x 2 ( 1 + x ) 2 ( 1 + x 2 ) 2 d x \displaystyle \int _{ 0 }^{ 2 }{ \frac { { x }^{ 5 }+2{ x }^{ 4 }+4{ x }^{ 3 }-2{ x }^{ 2 }-x }{ { (1+x) }^{ 2 }{ (1+{ x }^{ 2 }) }^{ 2 } } dx } =\int _{ 0 }^{ 2 }{ \frac { { (x-1)x(x+1)(x }^{ 2 }+1)+2{ x }^{ 2 }{ (x+1) }^{ 2 }-4{ x }^{ 2 } }{ { (1+x) }^{ 2 }{ (1+{ x }^{ 2 }) }^{ 2 } } dx }

0 2 ( x 1 ) x ( x + 1 ) ( x 2 + 1 ) + 2 x 2 ( x + 1 ) 2 4 x 2 ( 1 + x ) 2 ( 1 + x 2 ) 2 d x = 0 2 ( x ( x 1 ) ( x + 1 ) ( 1 + x 2 ) + 2 x 2 ( 1 + x 2 ) 2 4 x 2 ( 1 + x ) 2 ( 1 + x 2 ) 2 ) d x \displaystyle \int _{ 0 }^{ 2 }{ \frac { { (x-1)x(x+1)(x }^{ 2 }+1)+2{ x }^{ 2 }{ (x+1) }^{ 2 }-4{ x }^{ 2 } }{ { (1+x) }^{ 2 }{ (1+{ x }^{ 2 }) }^{ 2 } } dx } =\int _{ 0 }^{ 2 }{ \left( \frac { x(x-1) }{ (x+1){ (1+{ x }^{ 2 }) } } +\frac { 2{ x }^{ 2 } }{ { (1+{ x }^{ 2 }) }^{ 2 } } -\frac { 4{ x }^{ 2 } }{ { (1+x) }^{ 2 }{ (1+{ x }^{ 2 }) }^{ 2 } } \right) dx }

0 2 ( x ( x 1 ) ( x + 1 ) ( 1 + x 2 ) + 2 x 2 ( 1 + x 2 ) 2 4 x 2 ( 1 + x ) 2 ( 1 + x 2 ) 2 ) d x = 0 2 ( x 2 + 1 ( 1 + x ) ( x + 1 ) ( 1 + x 2 ) + 2 x 2 ( 1 + x 2 ) 2 ( 2 x ( 1 + x ) ( 1 + x 2 ) ) 2 ) d x \displaystyle \int _{ 0 }^{ 2 }{ \left( \frac { x(x-1) }{ (x+1){ (1+{ x }^{ 2 }) } } +\frac { 2{ x }^{ 2 } }{ { (1+{ x }^{ 2 }) }^{ 2 } } -\frac { 4{ x }^{ 2 } }{ { (1+x) }^{ 2 }{ (1+{ x }^{ 2 }) }^{ 2 } } \right) dx } =\int _{ 0 }^{ 2 }{ \left( \frac { { x }^{ 2 }+1-(1+x) }{ (x+1){ (1+{ x }^{ 2 }) } } +\frac { 2{ x }^{ 2 } }{ { (1+{ x }^{ 2 }) }^{ 2 } } -{ \left( \frac { { 2x } }{ { (1+x) }{ (1+{ x }^{ 2 }) } } \right) }^{ 2 } \right) dx }

0 2 ( x 2 + 1 ( 1 + x ) ( x + 1 ) ( 1 + x 2 ) + 2 x 2 ( 1 + x 2 ) 2 ( 2 x ( 1 + x ) ( 1 + x 2 ) ) 2 ) d x = 0 2 ( 1 ( x + 1 ) 1 ( 1 + x 2 ) + 2 x 2 ( 1 + x 2 ) 2 ( x + 1 ( 1 + x 2 ) 1 ( 1 + x ) ) 2 ) d x \displaystyle \int _{ 0 }^{ 2 }{ \left( \frac { { x }^{ 2 }+1-(1+x) }{ (x+1){ (1+{ x }^{ 2 }) } } +\frac { 2{ x }^{ 2 } }{ { (1+{ x }^{ 2 }) }^{ 2 } } -{ \left( \frac { { 2x } }{ { (1+x) }{ (1+{ x }^{ 2 }) } } \right) }^{ 2 } \right) dx } =\int _{ 0 }^{ 2 }{ \left( \frac { 1 }{ (x+1) } -\frac { 1 }{ { (1+{ x }^{ 2 }) } } +\frac { 2{ x }^{ 2 } }{ { (1+{ x }^{ 2 }) }^{ 2 } } -{ \left( \frac { { x+1 } }{ { (1+{ x }^{ 2 }) } } -\frac { { 1 } }{ { (1+x) } } \right) }^{ 2 } \right) dx }

0 2 ( x 2 + 1 ( 1 + x ) ( x + 1 ) ( 1 + x 2 ) + 2 x 2 ( 1 + x 2 ) 2 ( 2 x ( 1 + x ) ( 1 + x 2 ) ) 2 ) d x = ln ( 1 + x ) arctan x + 0 2 ( 2 x 2 ( 1 + x 2 ) 2 ( x + 1 ( 1 + x 2 ) 1 ( 1 + x ) ) 2 ) d x \displaystyle \int _{ 0 }^{ 2 }{ \left( \frac { { x }^{ 2 }+1-(1+x) }{ (x+1){ (1+{ x }^{ 2 }) } } +\frac { 2{ x }^{ 2 } }{ { (1+{ x }^{ 2 }) }^{ 2 } } -{ \left( \frac { { 2x } }{ { (1+x) }{ (1+{ x }^{ 2 }) } } \right) }^{ 2 } \right) dx } =\ln { (1+x) } -\arctan { x } +\int _{ 0 }^{ 2 }{ \left( \frac { 2{ x }^{ 2 } }{ { (1+{ x }^{ 2 }) }^{ 2 } } -{ \left( \frac { { x+1 } }{ { (1+{ x }^{ 2 }) } } -\frac { { 1 } }{ { (1+x) } } \right) }^{ 2 } \right) dx }

0 2 ( x 2 + 1 ( 1 + x ) ( x + 1 ) ( 1 + x 2 ) + 2 x 2 ( 1 + x 2 ) 2 ( 2 x ( 1 + x ) ( 1 + x 2 ) ) 2 ) d x = ln ( 1 + x ) arctan x x 1 + x 2 + 0 2 ( 1 ( 1 + x 2 ) ) d x 0 2 ( x 2 + 1 + 2 x ( 1 + x 2 ) 2 2 ( 1 + x 2 ) + 1 ( 1 + x ) 2 ) d x \displaystyle \int _{ 0 }^{ 2 }{ \left( \frac { { x }^{ 2 }+1-(1+x) }{ (x+1){ (1+{ x }^{ 2 }) } } +\frac { 2{ x }^{ 2 } }{ { (1+{ x }^{ 2 }) }^{ 2 } } -{ \left( \frac { { 2x } }{ { (1+x) }{ (1+{ x }^{ 2 }) } } \right) }^{ 2 } \right) dx } =\ln { (1+x) } -\arctan { x } -\frac { x }{ 1+{ x }^{ 2 } } +\int _{ 0 }^{ 2 }{ \left( \frac { 1 }{ { (1+{ x }^{ 2 }) } } \right) dx } -\int _{ 0 }^{ 2 }{ { \left( \frac { { { x }^{ 2 }+1+2x } }{ { { (1+{ x }^{ 2 }) }^{ 2 } } } -\frac { { 2 } }{ { (1+{ x }^{ 2 }) } } +\frac { 1 }{ { (1+x) }^{ 2 } } \right) }dx }

0 2 ( x 2 + 1 ( 1 + x ) ( x + 1 ) ( 1 + x 2 ) + 2 x 2 ( 1 + x 2 ) 2 ( 2 x ( 1 + x ) ( 1 + x 2 ) ) 2 ) d x = ln ( 1 + x ) arctan x x 1 + x 2 + arctan x 0 2 ( 2 x ( 1 + x 2 ) 2 1 ( 1 + x 2 ) + 1 ( 1 + x ) 2 ) d x \displaystyle \int _{ 0 }^{ 2 }{ \left( \frac { { x }^{ 2 }+1-(1+x) }{ (x+1){ (1+{ x }^{ 2 }) } } +\frac { 2{ x }^{ 2 } }{ { (1+{ x }^{ 2 }) }^{ 2 } } -{ \left( \frac { { 2x } }{ { (1+x) }{ (1+{ x }^{ 2 }) } } \right) }^{ 2 } \right) dx } =\ln { (1+x) } -\arctan { x } -\frac { x }{ 1+{ x }^{ 2 } } +\arctan { x } -\int _{ 0 }^{ 2 }{ { \left( \frac { { 2x } }{ { { (1+{ x }^{ 2 }) }^{ 2 } } } -\frac { { 1 } }{ { (1+{ x }^{ 2 }) } } +\frac { 1 }{ { (1+x) }^{ 2 } } \right) }dx }

0 2 ( x 2 + 1 ( 1 + x ) ( x + 1 ) ( 1 + x 2 ) + 2 x 2 ( 1 + x 2 ) 2 ( 2 x ( 1 + x ) ( 1 + x 2 ) ) 2 ) d x \displaystyle \int _{ 0 }^{ 2 }{ \left( \frac { { x }^{ 2 }+1-(1+x) }{ (x+1){ (1+{ x }^{ 2 }) } } +\frac { 2{ x }^{ 2 } }{ { (1+{ x }^{ 2 }) }^{ 2 } } -{ \left( \frac { { 2x } }{ { (1+x) }{ (1+{ x }^{ 2 }) } } \right) }^{ 2 } \right) dx } ln ( 1 + x ) arctan x x 1 + x 2 + arctan x + 1 1 + x 2 + arctan x + 1 1 + x \displaystyle \ln { (1+x) } -\arctan { x } -\frac { x }{ 1+{ x }^{ 2 } } +\arctan { x } +\frac { 1 }{ 1+{ x }^{ 2 } } +\arctan { x } +\frac { 1 }{ 1+x }

0 2 ( x 2 + 1 ( 1 + x ) ( x + 1 ) ( 1 + x 2 ) + 2 x 2 ( 1 + x 2 ) 2 ( 2 x ( 1 + x ) ( 1 + x 2 ) ) 2 ) d x = ln 3 28 15 + arctan 2 \displaystyle \int _{ 0 }^{ 2 }{ \left( \frac { { x }^{ 2 }+1-(1+x) }{ (x+1){ (1+{ x }^{ 2 }) } } +\frac { 2{ x }^{ 2 } }{ { (1+{ x }^{ 2 }) }^{ 2 } } -{ \left( \frac { { 2x } }{ { (1+x) }{ (1+{ x }^{ 2 }) } } \right) }^{ 2 } \right) dx } =\ln { 3 } -\frac { 28 }{ 15 } +\arctan { 2 }

A = 28 , B = 15 , C = 3 \displaystyle A=28, B=15, C=3 and D = 2 D=2

A + B + C + D = 28 + 15 + 3 + 2 = 48 \displaystyle A+B+C+D=28+15+3+2=\boxed{48}

Wow, how a incredible work!(+1)... I had other proof on mind, but this proof looks like right, thank you very much...

Guillermo Templado - 4 years, 8 months ago

Log in to reply

The title of your problem suggests that we just need to perform partial fractions on the integrand, right? Is this what you're thinking of?

Pi Han Goh - 4 years, 8 months ago

Log in to reply

Yup. there are two ways that I have on mind, one is factorizing the integrand in partial fractions or use Ostrogradski and Hermite method

Guillermo Templado - 4 years, 8 months ago

Log in to reply

@Guillermo Templado Using Ostrogradski, Hermite and indetermined coefficients the problem can be resolved in two paragrahps...

Guillermo Templado - 4 years, 8 months ago

Log in to reply

@Guillermo Templado Ah, great. You taught me something new! I will post a solution using this method in the weekends. Thanks for teaching me!! =D =D =D

Pi Han Goh - 4 years, 8 months ago

Log in to reply

@Pi Han Goh you're welcome. I hope you get it very good. I want to see your solution...

Guillermo Templado - 4 years, 8 months ago

@Pi Han Goh Here it's very good explained. the problem is that it is in spanish..

Guillermo Templado - 4 years, 8 months ago

super explanation!better than the top rated solution.

Mohammad Khaza - 3 years, 9 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...