∫ 0 2 ( x + 1 ) 2 ( x 2 + 1 ) 2 x 5 + 2 x 4 + 4 x 3 − 2 x 2 − x d x
The above integral can be written − B A + ln ( C ) + arctan ( D ) , where A and B are coprime positive integers and C and D are positive integers. Submit A + B + C + D .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Wow,(+1) great and big work! Exactly what I had on mind... @Pi Han Goh , Chew wrote the solution... I think this is a good example for starting treating with this method, very well developed by Chew..
∫ 0 2 ( 1 + x ) 2 ( 1 + x 2 ) 2 x 5 + 2 x 4 + 4 x 3 − 2 x 2 − x d x = ∫ 0 2 ( 1 + x ) 2 ( 1 + x 2 ) 2 ( x − 1 ) x ( x + 1 ) ( x 2 + 1 ) + 2 x 2 ( x + 1 ) 2 − 4 x 2 d x
∫ 0 2 ( 1 + x ) 2 ( 1 + x 2 ) 2 ( x − 1 ) x ( x + 1 ) ( x 2 + 1 ) + 2 x 2 ( x + 1 ) 2 − 4 x 2 d x = ∫ 0 2 ( ( x + 1 ) ( 1 + x 2 ) x ( x − 1 ) + ( 1 + x 2 ) 2 2 x 2 − ( 1 + x ) 2 ( 1 + x 2 ) 2 4 x 2 ) d x
∫ 0 2 ( ( x + 1 ) ( 1 + x 2 ) x ( x − 1 ) + ( 1 + x 2 ) 2 2 x 2 − ( 1 + x ) 2 ( 1 + x 2 ) 2 4 x 2 ) d x = ∫ 0 2 ( ( x + 1 ) ( 1 + x 2 ) x 2 + 1 − ( 1 + x ) + ( 1 + x 2 ) 2 2 x 2 − ( ( 1 + x ) ( 1 + x 2 ) 2 x ) 2 ) d x
∫ 0 2 ( ( x + 1 ) ( 1 + x 2 ) x 2 + 1 − ( 1 + x ) + ( 1 + x 2 ) 2 2 x 2 − ( ( 1 + x ) ( 1 + x 2 ) 2 x ) 2 ) d x = ∫ 0 2 ( ( x + 1 ) 1 − ( 1 + x 2 ) 1 + ( 1 + x 2 ) 2 2 x 2 − ( ( 1 + x 2 ) x + 1 − ( 1 + x ) 1 ) 2 ) d x
∫ 0 2 ( ( x + 1 ) ( 1 + x 2 ) x 2 + 1 − ( 1 + x ) + ( 1 + x 2 ) 2 2 x 2 − ( ( 1 + x ) ( 1 + x 2 ) 2 x ) 2 ) d x = ln ( 1 + x ) − arctan x + ∫ 0 2 ( ( 1 + x 2 ) 2 2 x 2 − ( ( 1 + x 2 ) x + 1 − ( 1 + x ) 1 ) 2 ) d x
∫ 0 2 ( ( x + 1 ) ( 1 + x 2 ) x 2 + 1 − ( 1 + x ) + ( 1 + x 2 ) 2 2 x 2 − ( ( 1 + x ) ( 1 + x 2 ) 2 x ) 2 ) d x = ln ( 1 + x ) − arctan x − 1 + x 2 x + ∫ 0 2 ( ( 1 + x 2 ) 1 ) d x − ∫ 0 2 ( ( 1 + x 2 ) 2 x 2 + 1 + 2 x − ( 1 + x 2 ) 2 + ( 1 + x ) 2 1 ) d x
∫ 0 2 ( ( x + 1 ) ( 1 + x 2 ) x 2 + 1 − ( 1 + x ) + ( 1 + x 2 ) 2 2 x 2 − ( ( 1 + x ) ( 1 + x 2 ) 2 x ) 2 ) d x = ln ( 1 + x ) − arctan x − 1 + x 2 x + arctan x − ∫ 0 2 ( ( 1 + x 2 ) 2 2 x − ( 1 + x 2 ) 1 + ( 1 + x ) 2 1 ) d x
∫ 0 2 ( ( x + 1 ) ( 1 + x 2 ) x 2 + 1 − ( 1 + x ) + ( 1 + x 2 ) 2 2 x 2 − ( ( 1 + x ) ( 1 + x 2 ) 2 x ) 2 ) d x ln ( 1 + x ) − arctan x − 1 + x 2 x + arctan x + 1 + x 2 1 + arctan x + 1 + x 1
∫ 0 2 ( ( x + 1 ) ( 1 + x 2 ) x 2 + 1 − ( 1 + x ) + ( 1 + x 2 ) 2 2 x 2 − ( ( 1 + x ) ( 1 + x 2 ) 2 x ) 2 ) d x = ln 3 − 1 5 2 8 + arctan 2
A = 2 8 , B = 1 5 , C = 3 and D = 2
A + B + C + D = 2 8 + 1 5 + 3 + 2 = 4 8
Wow, how a incredible work!(+1)... I had other proof on mind, but this proof looks like right, thank you very much...
Log in to reply
The title of your problem suggests that we just need to perform partial fractions on the integrand, right? Is this what you're thinking of?
Log in to reply
Yup. there are two ways that I have on mind, one is factorizing the integrand in partial fractions or use Ostrogradski and Hermite method
Log in to reply
@Guillermo Templado – Using Ostrogradski, Hermite and indetermined coefficients the problem can be resolved in two paragrahps...
Log in to reply
@Guillermo Templado – Ah, great. You taught me something new! I will post a solution using this method in the weekends. Thanks for teaching me!! =D =D =D
Log in to reply
@Pi Han Goh – you're welcome. I hope you get it very good. I want to see your solution...
@Pi Han Goh – Here it's very good explained. the problem is that it is in spanish..
super explanation!better than the top rated solution.
Problem Loading...
Note Loading...
Set Loading...
As suggested by the title of the problem, the problem can be solved by Ostrogradsky method . According to the method, if P ( x ) and Q ( x ) are polynomials with real coefficients and P ( x ) / Q ( x ) is a proper fraction, and Q ( x ) has multiple roots, then
∫ Q ( x ) P ( x ) d x = Q 1 ( x ) P 1 ( x ) + ∫ Q 2 ( x ) P 2 ( x ) d x
where Q 1 ( x ) is the greatest common divisor of Q ( x ) and its derivative Q ′ ( x ) , while Q 2 ( x ) = Q ( x ) / Q 1 ( x ) . Undetermined coefficients of he polynomials P 1 ( x ) and P 2 ( x ) , whose degrees are one less than of the polynomials Q 1 ( x ) and Q 2 ( x ) respectively, we calculate by deriving the above integral identity.
In this problem, P ( x ) = x 5 + 2 x 4 + 4 x 3 − 2 x 2 − x ; Q ( x ) = ( x + 1 ) 2 ( x 2 + 1 ) 2 , Q ′ ( x ) = 2 ( x + 1 ) ( x 2 + 1 ) 2 + 4 x ( x + 1 ) 2 ( x 2 + 1 ) , then g cd ( Q ( x ) , Q ′ ( x ) ) = Q 1 ( x ) = ( x + 1 ) ( x 2 + 1 ) and Q 2 ( x ) = Q ( x ) / Q 1 ( x ) = ( x + 1 ) ( x 2 + 1 ) = Q 1 ( x ) . Now, let P 1 ( x ) = A x 2 + B x + C and P 2 ( x ) = D x 2 + E x + F . Then, we have:
∫ ( x + 1 ) 2 ( x 2 + 1 ) 2 x 5 + 2 x 4 + 4 x 3 − 2 x 2 − x d x ( x + 1 ) 2 ( x 2 + 1 ) 2 x 5 + 2 x 4 + 4 x 3 − 2 x 2 − x x 5 + 2 x 4 + 4 x 3 − 2 x 2 − x = ( x + 1 ) ( x 2 + 1 ) A x 2 + B x + C + ∫ ( x + 1 ) ( x 2 + 1 ) D x 2 + E x + F d x Differentiate up and down wrt x = ( x + 1 ) 2 ( x 2 + 1 ) 2 ( 2 A x + B ) ( x + 1 ) ( x 2 + 1 ) − ( A x 2 + B x + C ) ( 3 x 2 + 2 x + 1 ) + ( x + 1 ) ( x 2 + 1 ) D x 2 + E x + F = ( D x 2 + ( 2 A + E ) x + B + F ) ( x + 1 ) ( x 2 + 1 ) − ( A x 2 + B x + C ) ( 3 x 2 + 2 x + 1 )
Solving for A , B , C , D , E and F (see below), we get A = 0 , B = 0 , C = 2 , D = 1 , E = 1 , F = 2 . Therefore,
I = ∫ 0 2 ( x + 1 ) 2 ( x 2 + 1 ) 2 x 5 + 2 x 4 + 4 x 3 − 2 x 2 − x d x = ( x + 1 ) ( x 2 + 1 ) 2 ∣ ∣ ∣ ∣ 0 2 + ∫ 0 2 ( x + 1 ) ( x 2 + 1 ) x 2 + x + 2 d x = − 1 5 2 8 + ∫ 0 2 ( x + 1 1 + x 2 + 1 1 ) d x = − 1 5 2 8 + [ ln ( x + 1 ) + tan − 1 x ] 0 2 = − 1 5 2 8 + ln 3 + tan − 1 2 By partial fractions
⟹ A + B + C + D = 2 8 + 1 5 + 3 + 2 = 4 8
Solving for A , B , C , D , E and F
Equating the coefficient of x 5 , ⟹ D = 1 . . . ( 1 ) .
Let x = − 1 ⟹ − 1 + 2 − 4 − 2 + 1 = 0 − ( A − B + C ) ( 3 − 2 + 1 ) ⟹ A − B + C = 2 . . . ( 2 ) .
Let x = 0 ⟹ 0 = B + F − C ⟹ B − C + F = 0 . . . ( 3 ) .
Let x = i
⟹ i + 2 − 4 i + 2 − i 4 − 4 i 2 ⟹ B − A + C = 0 − ( − A + B i + C ) ( − 3 + 2 i + 1 ) = ( − A + B i + C ) ( 2 − 2 i ) = − A + B i + C = 0 . . . ( 4 ) = 2 . . . ( 5 )
( 2 ) + ( 5 ) : − B + 2 C = − 0 ( 4 ) + 2 C = 4 ⟹ C = 2 . . . ( 6 )
( 5 ) : − A + C = − A + 2 ( 6 ) = 2 ⟹ A = 0 . . . ( 7 )
( 3 ) : B − C + F = 0 ( 4 ) − 2 ( 6 ) + F = 0 ⟹ F = 2 . . . ( 8 )
Let x = 1
⟹ 1 + 2 + 4 − 2 − 1 4 ⟹ E = ( 1 + E + 2 ) ( 2 ) ( 2 ) − 2 ( 6 ) = 4 E + 1 2 − 1 2 = 1