Hey! I have seen that before

Algebra Level 4

2 , 6 , 12 , 20 , 30 , , a n \large 2,6,12,20,30, \ldots, a_n

Above shows the first few numbers of an increasing series. If the sum of these numbers equals 32430, find the value of the last term, a n a_n .


The answer is 2070.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

6 solutions

Ikkyu San
May 1, 2015

2 + 6 + 12 + 20 + + a n = 32430 ( 1 2 + 1 ) + ( 2 2 + 2 ) + ( 3 2 + 3 ) + ( 4 2 + 4 ) + + ( n 2 + n ) = 32430 i = 1 n ( i 2 + i ) = 32430 i = 1 n i 2 + i = 1 n i = 32430 n ( n + 1 ) ( 2 n + 1 ) 6 + n ( n + 1 ) 2 = 32430 2 n 3 + 3 n 2 + n + 3 n 2 + 3 n 6 = 32430 n 3 + 3 n 2 + 2 n 3 = 32430 n 3 + 3 n 2 + 2 n 97290 = 0 ( n 45 ) ( n 2 + 48 n + 2162 ) = 0 n = 45 \begin{aligned}2+6+12+20+\ldots+a_{n}=&\ 32430\\(1^2+\color{#D61F06}1)+(2^2+\color{#D61F06}2)+(3^2+\color{#D61F06}3)+(4^2+\color{#D61F06}4)+\ldots+(n^2+\color{#D61F06}n)=&\ 32430\\\displaystyle\sum_{i=1}^{n}(i^2+\color{#D61F06}i)=&\ 32430\\\displaystyle\sum_{i=1}^{n}i^2+\color{#D61F06}{\displaystyle\sum_{i=1}^{n}i}=&\ 32430\\\dfrac{n(n+1)(2n+1)}{6}+\color{#D61F06}{\dfrac{n(n+1)}{2}}=&\ 32430\\\dfrac{2n^3+3n^2+n+3n^2+3n}{6}=&\ 32430\\\dfrac{n^3+3n^2+2n}{3}=&\ 32430\\n^3+3n^2+2n-97290=&\ 0\\(n-45)(n^2+48n+2162)=&\ 0\\n=&\ 45\end{aligned}

From sequence 2 , 6 , 12 , 20 , 30 , . . . 1 2 + 1 , 2 2 + 2 , 3 2 + 3 , 4 2 + 4 , 5 2 + 5 , . . . 2,6,12,20,30,...\rightarrow 1^2+1,2^2+2,3^2+3,4^2+4,5^2+5,...

Therefore, a n = n 2 + n a 45 = 4 5 2 + 45 = 2025 + 45 = 2070 a_n=n^2+n\rightarrow a_{45}=45^2+45=2025+45=\boxed{2070}

Moderator note:

Your work is very neat, I like that you incorporate colours into your work. Great job!

Bonus question: Instead of triangular numbers, we are given the sum of the first n n smallest pentagonal numbers is 4200. Can you find the value of n n ?

Challenge Master : Thank you! // The value of n is 20.

Ikkyu San - 6 years, 1 month ago

Log in to reply

Challenge Master: The value of n \text{n} is 20, then!

Kartik Sharma - 6 years, 1 month ago

Yeah! A good solution

A Former Brilliant Member - 6 years, 1 month ago

Log in to reply

Thank you very much!

Ikkyu San - 6 years, 1 month ago

How you do that Sir? The 2nd question is harder i thought.

Hafizh Ahsan Permana - 6 years, 1 month ago

Log in to reply

General sequence of pentagonal number is 1 , 5 , 12 , 22 , 35 , 1,5,12,22,35,\ldots

And general term of pentagonal number is p n = 3 n 2 n 2 p_n=\dfrac{3n^2-n}{2}

For sum of pentagonal number is,

1 + 5 + 12 + 22 + + p n = 4200 3 ( 1 2 ) 1 2 + 3 ( 2 2 ) 2 2 + 3 ( 3 2 ) 3 2 + 3 ( 4 2 ) 4 2 + + 3 n 2 n 2 = 4200 i = 1 n ( 3 i 2 i 2 ) = 4200 3 2 i = 1 n i 2 1 2 i = 1 n i = 4200 ( 3 2 ) ( n ( n + 1 ) ( 2 n + 1 ) 6 ) ( 1 2 ) ( n ( n + 1 ) 2 ) = 4200 2 n 3 + 3 n 2 + n 4 n 2 + n 4 = 4200 n 3 + n 2 2 = 4200 n 3 + n 2 8400 = 0 ( n 20 ) ( n 2 + 21 n + 420 ) = 0 n = 20 \begin{aligned}1+5+12+22+\ldots+p_{\color{#D61F06}n}=&\ 4200\\\dfrac{3(\color{#D61F06}1^2)-\color{#D61F06}1}{2}+\dfrac{3(\color{#D61F06}2^2)-\color{#D61F06}2}{2}+\dfrac{3(\color{#D61F06}3^2)-\color{#D61F06}3}{2}+\dfrac{3(\color{#D61F06}4^2)-\color{#D61F06}4}{2}+\ldots+\dfrac{3\color{#D61F06}n^2-\color{#D61F06}n}{2}=&\ 4200\\\displaystyle\sum_{i=1}^{\color{#D61F06}n}\left(\dfrac{3i^2-i}{2}\right)=&\ 4200\\\dfrac{3}{2}\displaystyle\sum_{i=1}^{\color{#D61F06}n}i^2-\dfrac{1}{2}\displaystyle\sum_{i=1}^{\color{#D61F06}n}i=&\ 4200\\\left(\dfrac{3}{2}\right)\left(\dfrac{\color{#D61F06}n(\color{#D61F06}n+1)(2\color{#D61F06}n+1)}{6}\right)-\left(\dfrac{1}{2}\right)\left(\dfrac{\color{#D61F06}n(\color{#D61F06}n+1)}{2}\right)=&\ 4200\\\dfrac{2\color{#D61F06}n^3+3\color{#D61F06}n^2+\color{#D61F06}n}{4}-\dfrac{\color{#D61F06}n^2+\color{#D61F06}n}{4}=&\ 4200\\\dfrac{\color{#D61F06}n^3+\color{#D61F06}n^2}{2}=&\ 4200\\\color{#D61F06}n^3+\color{#D61F06}n^2-8400=&\ 0\\(\color{#D61F06}n-20)(\color{#D61F06}n^2+21\color{#D61F06}n+420)=&\ 0\\\color{#D61F06}{n=}&\ \color{#D61F06}{20}\end{aligned}

Ikkyu San - 6 years, 1 month ago

Challenge Master: the value of n is 20

Krishna Ramesh - 6 years, 1 month ago

That's right the answer for this bonus question is 20. Good work @Krishna Ramesh , @Ikkyu San , @Kartik Sharma !

Brilliant Mathematics Staff - 6 years, 1 month ago

Yes, we will get n n (n+1) = 8400. This gives n = 20

Raushan Sharma - 6 years, 1 month ago

An alternate method: Notice that a n + 3 3 a n + 2 + 3 a n + 1 a n = 0 a_{n+3}-3a_{n+2}+3a_{n+1}-a_n=0 for any n n . (The binomial coefficients here are not a coincidence! I think that the easiest way to prove it is to just bash the algebra, though...) Using this, we could sum this similarly to a geometric series: Call the sum S S . Write down S S , 3 S -3S , 3 S 3S , and (S) in such a way to use the above identity, and... well, you'll see, I'm fairly certain it all works out in the end.

Akiva Weinberger - 6 years, 1 month ago

Log in to reply

On that identity: It's weird.

If a n a_n is constant, then we have a n + 1 a n = 0 a_{n+1}-a_n=0 .

If a n a_n is linear, then we have a n + 2 2 a n + 1 + a n = 0 a_{n+2}-2a_{n+1}+a_n=0 .

If a n a_n is quadratic, then we have a n + 3 3 a n + 2 + 3 a n + 1 a n = 0 a_{n+3}-3a_{n+2}+3a_{n+1}-a_n=0 .

If a n a_n is cubic, then we have a n + 4 4 a n + 3 + 6 a n + 2 4 a n + 1 + a n = 0 a_{n+4}-4a_{n+3}+6a_{n+2}-4a_{n+1}+a_n=0 .

Notice the similarities to the polynomials ( a 1 ) 1 , ( a 1 ) 2 , ( a 1 ) 3 , (a-1)^1,(a-1)^2,(a-1)^3,\dots . The pattern continues, but I'm not sure I know the simplest way to prove this.

Akiva Weinberger - 6 years, 1 month ago

Log in to reply

Nice observation! Sketch out the pascal triangle, and you can see why.

Pi Han Goh - 6 years, 1 month ago

Log in to reply

@Pi Han Goh After writing that, I realized it could be proven easily by induction.

(I wonder if it works for fractional orders, similar to Newton's generalized binomial theorem?)

Akiva Weinberger - 6 years, 1 month ago

Log in to reply

@Akiva Weinberger POST PROOF HERE! Fractional orders too? how?

Pi Han Goh - 6 years, 1 month ago

Log in to reply

@Pi Han Goh Wait, I don't know how to prove it for fractional orders (EDIT: "degrees"). I just wondered if it could be true.

For the induction thing, just notice that f ( n + 1 ) f ( n ) f(n+1)-f(n) brings the degree of f f down one. Applying this transformation to a n a_n repeatedly, we get the identities above.

Akiva Weinberger - 6 years, 1 month ago

Great solution.

Chaitnya Shrivastava - 5 years, 7 months ago

2 + 6 + 12 + 20 + 30 + + a n = 32430 2+6+12+20+30+ \ldots+a_n = 32430 2 ( 1 + 3 + 6 + 10 + 15 + + a n 2 ) = 32430 2(1+3+6+10+15+ \ldots+\frac{a_n}{2}) = 32430 Using the sum for triangular series formula, 2 ( ( n ) ( n + 1 ) ( n + 2 ) 6 ) = 32430 2(\frac{(n)(n+1)(n+2)}{6}) = 32430 ( n ) ( n + 1 ) ( n + 2 ) = 97290 (n)(n+1)(n+2) = 97290 n = 45 \implies n = 45 Since a n = n ( n + 1 ) a_n = n(n+1) a n = 45 ( 46 ) a_n = 45(46) a n = 2070 \boxed{a_n = 2070}

Moderator note:

Yes, a slight variation. To make this solution clearer, you could convert the triangular numbers in terms of binomial coefficients. Nevertheless, great work!

A Tetrahedral number is the sum of the first triangular numbers. One could easily obtain its identity by the hockey stick identity: ( 2 2 ) + ( 3 2 ) + ( 4 2 ) + + ( n + 1 2 ) = ( n + 2 3 ) \large {2 \choose 2} + {3 \choose 2} + {4 \choose 2} + \ldots + {n+1 \choose 2} = {n+2 \choose 3}

Just Ikkyu San method with little modification.
i = 1 n ( i 2 + i ) = n ( n + 1 ) ( 2 n + 1 ) 6 + n ( n + 1 ) 2 = n ( n + 1 ) 2 2 n + 4 3 = n ( n + 1 ) ( n + 2 ) 3 = 32430. ( n + 1 ) 3 3 32430. n = 44.99..... T a k e n = 45 , 45 46 47 3 = 32430. n = 45 , a n = 4 5 2 + 45 = 2070. \displaystyle \sum_{i=1}^n(i^2+i)\\=\dfrac{n(n+1)(2n+1)}{6}+\dfrac{n(n+1)}{2}\\= \dfrac{n(n+1)}{2}* \dfrac{2n+4}{3}\\=\dfrac{n(n+1)(n+2)}{3}\\=32430.\\\therefore ~\dfrac{(n+1)^3} 3\\ \approx 32430.\\~~~~~~~~~\implies~n=44.99.....\\~~~~~~~~~~~~Take~n=45,\\\dfrac{45*46*47} 3 \\=32430.\\ ~~~~~~~~~~~\implies~n=45, \\a_n\\=45^2+45\\=2070.

Moderator note:

Wow, a quick way to force out a solution. Nicely done! One should note that n ( n + 1 ) ( n + 2 ) 3 \frac {n(n+1)(n+2)}{3} is an increasing function, so there's only one unique value when it's positive.

Nicola Hu
May 5, 2015

The sum of the sequence is : 2 + 6 + 12 + . . . . = 2 ( 1 + ( 1 + 2 ) + ( 1 + 2 + 3 ) + . . . . + ( 1 + 2 + . . . n ) ) 2+6+12+....=2(1+(1+2)+(1+2+3)+....+(1+2+...n))

The problem is : how much is 2 S 2S Let's find S S = ( 1 + ( 1 + 2 ) + ( 1 + 2 + 3 ) + . . . . . . + ( 1 + 2 + . . . . n ) ) S=( 1 + (1+2) + (1+2+3) + ......+ (1+2+....n))

Let' draw a picture!

Q + S = n ( n + 1 ) 2 2 Q + S = \tfrac{n(n+1)^2}{2} Q = 1 2 + 2 2 + 3 2 + . . . + n 2 = n ( n + 1 ) ( 2 n + 1 ) 6 Q= 1^2+2^2+3^2+...+n^2=\tfrac{n(n+1)(2n+1)}{6} And so S = ( Q + S ) Q = n ( n + 1 ) 2 2 n ( n + 1 ) ( 2 n + 1 ) 6 = n ( n + 1 ) ( n + 2 ) 6 S=(Q+S)-Q=\tfrac{n(n+1)^2}{2} -\tfrac{n(n+1)(2n+1)}{6} = \tfrac{n(n+1)(n+2)}{6}

From this , we obtain 2 S = n ( n + 1 ) ( n + 2 ) 3 = 32340 2S=\tfrac{n(n+1)(n+2)}{3}=32340 Notice that n ( n + 1 ) ( n + 2 ) n 3 . n(n+1)(n+2) \sim n^3 . 32340 3 3 45. \sqrt[3]{32340*3} \sim 45. We try n = 44 n=44 and it works

Then a n = n ( n + 1 ) = 2070 a_n= n(n+1)= 2070

David Holcer
May 2, 2015

For me, it's easier to see a pattern with recursive loops, so using a bit of python to help me. Although, it is much easier to do Ikkyu's method if you notice the pattern.

1
2
3
4
5
6
7
8
9
x=[2]
c=2
while True:
    d=x[-1]+2*c
    if sum(x)==32430:
        break
    x.append(d)
    c+=1
print x[-1]

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...