Hot And Fresh

Algebra Level 5

3 [ log 3 ( 2 + x + 2 x ) ] 2 + 2 log 1 / 3 ( 2 + x + 2 x ) log 3 ( 9 x 2 ) + ( 1 log 1 / 3 x ) 2 = 0 3 \left [\log_3 ( \sqrt{2+x} + \sqrt{2-x} ) \right]^2 + 2 \log_{1/3} ( \sqrt{2+x} + \sqrt{2-x} ) \cdot \log_3 (9x^2) + (1 - \log_{1/3} x )^2 = 0

If the sum of the zero-free root(s) of the equation above can be expressed as a b c \dfrac{a\sqrt{b}}{c} where a a , b b , and c c are pairwise coprime positive integers , determine a + b + c a+b+c .


This problem is extracted from the 2016 Vietnamese University Entrance Examination which just took place a few hours ago. Solutions and discussions are always welcome!


The answer is 28.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Let y = 2 + x + 2 x y =\sqrt{2+x} + \sqrt{2-x} ; then we have:

3 log 3 2 y + 2 log 1 3 y log 3 ( 9 x 2 ) + ( 1 log 1 3 x ) 2 = 0 3 log 3 2 y + 2 log 3 y log 3 1 3 2 log 3 ( 3 x ) + ( 1 log 3 x log 3 1 3 ) 2 = 0 3 log 3 2 y 4 log 3 y log 3 ( 3 x ) + ( 1 + log 3 x ) 2 = 0 3 log 3 2 y 4 log 3 y log 3 ( 3 x ) + log 3 2 ( 3 x ) = 0 ( 3 log 3 y log 3 ( 3 x ) ) ( log 3 y log 3 ( 3 x ) ) = 0 \begin{aligned} 3\log_3^2 y + 2\log_\frac 13 y\log_3(9x^2) + (1-\log_\frac 13 x)^2 & = 0 \\ 3\log_3^2 y + 2 \cdot \frac{\log_3 y}{\log_3 \frac 13} \cdot 2 \log_3 (3x) + (1- \frac{\log_3 x}{\log_3 \frac 13})^2 & = 0 \\ 3\log_3^2 y - 4\log_3 y \log_3 (3x) + (1+\log_3 x)^2 & = 0 \\ 3\log_3^2 y - 4\log_3 y \log_3 (3x) + \log_3^2 (3x) & = 0 \\ \left(3\log_3 y - \log_3 (3x)\right) \left(\log_3 y - \log_3 (3x)\right) & = 0 \end{aligned}

{ 3 log 3 y = log 3 ( 3 x ) ( 2 + x + 2 x ) 3 = 3 x log 3 y = log 3 ( 3 x ) 2 + x + 2 x = 3 x \implies \begin{cases} 3\log_3 y = \log_3 (3x) & \implies \left(\sqrt{2+x} + \sqrt{2-x}\right)^3 = 3x \\ \log_3 y = \log_3 (3x) & \implies \sqrt{2+x} + \sqrt{2-x} = 3x \end{cases}

Considering ( 2 + x + 2 x ) 3 = 3 x \left(\sqrt{2+x} + \sqrt{2-x}\right)^3 = 3x . We note that the minumum value of 2 + x + 2 x \sqrt{2+x} + \sqrt{2-x} is 2, when x = ± 2 x=\pm 2 . Therefore, minimum value of LHS min ( 2 + x + 2 x ) 3 = 8 \min (\sqrt{2+x} + \sqrt{2-x})^3 = 8 . Since the equation is only valid for x [ 2 , 2 ] x \in [-2,2] , the maximum value of RHS max ( 3 x ) = 6 \max (3x) = 6 , \implies LHS > > RHS for x [ 2 , 2 ] x \in [-2,2] , therefore there is no root.

Solving the following:

2 + x + 2 x = 3 x Squaring both sides 2 + x + 2 4 x 2 + 2 x = 9 x 2 2 4 x 2 = 9 x 2 4 Squaring both sides 16 4 x 2 = 81 x 4 72 x 2 + 16 81 x 4 68 x 2 = 0 x 2 ( 81 x 2 68 ) = 0 x = 2 17 9 Non-zero solution \begin{aligned} \sqrt{2+x} + \sqrt{2-x} & = 3x \quad \quad \small \color{#3D99F6}{\text{Squaring both sides}} \\ 2+x + 2\sqrt{4-x^2} +2-x & = 9x^2 \\ 2\sqrt{4-x^2} & = 9x^2 - 4 \quad \quad \small \color{#3D99F6}{\text{Squaring both sides}} \\ 16 - 4x^2 & = 81x^4 -72x^2 + 16 \\ 81x^4 -68x^2 & = 0 \\ x^2(81x^2-68) & = 0 \\ x & = \frac {2\sqrt{17}}9 \quad \quad \small \color{#3D99F6}{\text{Non-zero solution}} \end{aligned}

a + b + c = 2 + 17 + 9 = 28 \implies a+b+c = 2+17+9 = \boxed{28} .

wondering about the other option

Leah Jurgens - 4 years, 11 months ago

Log in to reply

Tried, but it is simply too tedious.

Chew-Seong Cheong - 4 years, 11 months ago

Log in to reply

and what method did you try?

Leah Jurgens - 4 years, 11 months ago

Log in to reply

@Leah Jurgens I got it now. There is no root for 2 x 2 -2 \le x \le 2 . Will show the solution.

Chew-Seong Cheong - 4 years, 11 months ago

and you may only get 50% of the score provided based on what you did, so you should try a more subtle method

Leah Jurgens - 4 years, 11 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...