Hot Integrals

Calculus Level 4

0 d x 1 + x 3 \large \int_{0}^{\infty }\dfrac{dx}{1+x^{3}}

If the value of the integral above can be expressed in the form A B C π , \dfrac{A \sqrt B}C \pi, where A , B , C A,B,C are positive integers with A , C A,C coprime and B B square-free, find A + B + C A+B+C .


The answer is 14.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

I = 0 1 1 1 + x 3 d x + 1 1 1 + x 3 d x I = \displaystyle \int_{0}^{1} \dfrac{1}{1+x^{3}}dx + \displaystyle \int_{1}^{\infty} \dfrac{1}{1+x^{3}}dx
For the second integral, put x = 1 t d x = d t t 2 x = \dfrac{1}{t} \rightarrow dx = \dfrac{-dt}{t^{2}}
I = 0 1 1 1 + x 3 d x + 1 0 t 3 t 2 ( 1 + t 3 ) d t I = \displaystyle \int_{0}^{1} \dfrac{1}{1+x^{3}}dx +\displaystyle \int_{1}^{0} \dfrac{-t^{3}}{t^{2}(1+t^{3})}dt I = 0 1 1 1 + x 3 d x + 0 1 x 1 + x 3 d x I = \displaystyle \int_{0}^{1} \dfrac{1}{1+x^{3}}dx +\displaystyle \int_{0}^{1} \dfrac{x}{1+x^{3}}dx
I used the properties
a) a b f ( t ) d t = a b f ( x ) d x \displaystyle \int_{a}^{b}f(t)dt = \displaystyle \int_{a}^{b}f(x) dx
b) a b f ( x ) d t = b a f ( x ) d x \displaystyle \int_{a}^{b}f(x)dt = \displaystyle -\int_{b}^{a}f(x) dx
I = 0 1 1 + x 1 + x 3 d x I = \displaystyle \int_{0}^{1}\dfrac{1+x}{1+x^{3}}dx
I = 0 1 d x x 2 x + 1 I = \displaystyle \int_{0}^{1} \dfrac{dx}{x^{2}-x+1}
I = 0 1 d x ( x 1 2 ) 2 + ( 3 2 ) 2 \therefore I = \displaystyle \int_{0}^{1} \dfrac{dx}{\left(x-\dfrac{1}{2}\right)^{2} + \left(\dfrac{\sqrt{3}}{2}\right)^{2}}
I = [ 2 3 tan 1 ( 2 t 1 3 ) ] 0 1 \therefore I =\left[ \dfrac{2}{\sqrt{3}}\tan^{-1}\left(\dfrac{2t-1}{\sqrt{3}}\right) \right]_{0}^{1} I = 2 3 π 3 = 2 3 π 9 \therefore I = \dfrac{2}{\sqrt{3}} \cdot \dfrac{\pi}{3} = \dfrac{2\sqrt{3}\pi}{9}
Comparing, A = 2, B = 3, C = 9
A + B + C = 2 + 3 + 9 = 14 A + B + C = 2 + 3 + 9 = 14


Why not use partial fractions, since x 3 + 1 = ( x + 1 ) ( x 2 x + 1 ) x^3+1 = (x+1)(x^2-x+1) ? The indefinite integral of ( x 3 + 1 ) 1 (x^3+1)^{-1} is a combination of ln ( x + 1 ) \ln(x+1) , ln ( x 2 x + 1 ) \ln(x^2-x+1) and tan 1 2 x 1 3 \tan^{-1}\frac{2x-1}{\sqrt3} , and the result is immediate.

Mark Hennings - 5 years, 3 months ago

Log in to reply

Haha yea, partial fractions integration was my immediate lazy approach.

Calvin Lin Staff - 5 years, 3 months ago

Log in to reply

What's lazy about it? It works, without the need for a cute substitution...

Mark Hennings - 5 years, 3 months ago

Log in to reply

@Mark Hennings Lazy in the sense of "I know for certain that this approach will work on rational functions with linear / quadratic terms in the denominator, though it could at times get ugly".

Calvin Lin Staff - 5 years, 3 months ago

I just wanted to change the limits from 0 to 1 instead of the improper integral.

A Former Brilliant Member - 5 years, 3 months ago
Nihar Mahajan
Feb 11, 2016

Substitute y = 1 1 + x 3 y=\dfrac{1}{1+x^3} . Note that as x = 0 x=0 , y = 1 y=1 and as x x\rightarrow \infty , y = 0 y=0 . Also ,

d y = 3 x 2 ( x 3 + 1 ) 2 d x (Using power rule) d x = ( x 3 + 1 ) 2 d y 3 x 2 = 1 3 y ( 1 y 1 ) 2 3 d y dy=\dfrac{-3x^2}{(x^3+1)^2} \ dx \text{(Using power rule)} \Rightarrow dx=-\dfrac{(x^3+1)^2dy}{3x^2} = -\dfrac{1}{3y}\left(\dfrac{1}{y} - 1\right)^{\frac{-2}{3}} \ dy

Hence the integral becomes:

0 d x ( 1 + x 3 ) = 1 0 1 3 y ( 1 y 1 ) 2 3 d y = 1 3 0 1 y 1 ( 1 y ) 2 3 y 2 3 d y = 1 3 0 1 y 1 3 ( 1 y ) 2 3 d y Note that the above integral is in form of definition of Beta Function = 1 3 B ( 2 3 , 1 3 ) = 1 3 Γ ( 2 3 ) Γ ( 1 3 ) Γ ( 1 ) = 1 3 Γ ( 1 1 3 ) Γ ( 1 3 ) Γ ( 1 ) = 1 = π 3 sin π 3 Γ ( n ) Γ ( 1 n ) = π sin ( n π ) = π 3 ( 3 2 ) = 2 3 π 9 \begin{aligned} \int_0^{\infty} \dfrac{dx}{(1+x^3)} &= \int_{1}^{0} -\dfrac{1}{3y}\left(\dfrac{1}{y} - 1\right)^{\frac{-2}{3}} \ dy \\ &= \dfrac{1}{3} \int_{0}^{1} \dfrac{y^{-1}(1-y)^{\frac{-2}{3}}}{y^{\frac{-2}{3}}} \ dy \\ &=\dfrac{1}{3} \int_{0}^{1} y^{-\frac{1}{3}}(1-y)^{-\frac{2}{3}} \ dy \\ &\text{Note that the above integral is in form of definition of Beta Function} \\ &= \dfrac{1}{3} B\left(\dfrac{2}{3} , \dfrac{1}{3}\right) \\ &=\dfrac{1}{3}\cdot\dfrac{\Gamma\left(\dfrac{2}{3}\right)\Gamma\left(\dfrac{1}{3}\right)}{\Gamma(1)} \\ &= \dfrac{1}{3} \cdot \Gamma\left(1-\dfrac{1}{3}\right)\Gamma\left(\dfrac{1}{3}\right) \quad\quad\quad \dots \ \because \Gamma(1)=1 \\ &=\dfrac{\pi}{3\sin\dfrac{\pi}{3}} \quad\quad\quad \dots \ \because \Gamma(n)\Gamma(1-n)=\dfrac{\pi}{\sin(n\pi)} \\ &=\dfrac{\pi}{3\left(\dfrac{\sqrt{3}}{2}\right)} \\ &=\dfrac{2\sqrt{3}\pi}{9} \end{aligned}

Here, A = 2 , B = 3 , C = 9 A=2 \ , \ B=3 \ , \ C=9 , hence , A + B + C = 2 + 3 + 9 = 14 A+B+C=2+3+9=\boxed{14}

Moderator note:

Interesting approach. Switching the axis of integration from x to y converts this into another well-known form.

Nice way to solve this question (+1)!

Samarth Agarwal - 5 years, 4 months ago

Log in to reply

Feels good :)

Nihar Mahajan - 5 years, 4 months ago

fancy way to solve it(+1 too), anyways i simply solved as @Vighnesh Shenoy did

Mardokay Mosazghi - 5 years, 4 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...