How complexity does a number achieve? #2

Algebra Level 3

How many complex numbers z z are there such that z = 1 |z| = 1 and z z ˉ + z ˉ z = 1 ? \large{\left|\dfrac{z}{\bar{z}}+\dfrac{\bar{z}}{z}\right|} =1?


The answer is 8.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

Fiki Akbar
Mar 21, 2015

Write z = r e i θ z = r e^{i \theta} . Since z = 1 |z|=1 , then r = 1 r=1 , hence z = e i θ z = e^{i \theta} . Now, we have, z z ˉ + z ˉ z = 2 ( e i 2 θ + e i 2 θ 2 ) = 2 cos ( 2 θ ) \frac{z}{\bar{z}} + \frac{\bar{z}}{z} = 2 \left(\frac{e^{i 2\theta} + e^{-i 2\theta}}{2} \right) = 2 \cos(2\theta) then, z z ˉ + z ˉ z = 1 \left| \frac{z}{\bar{z}} + \frac{\bar{z}}{z}\right | = 1 imply cos ( 2 θ ) = 1 2 \left| \cos(2\theta) \right| =\frac{1}{2}

The equation have 2 solutions for each quadrant, so in total we have 8 solutions.

Shouldn’t it be cosh x?

Michael Shen - 8 months, 3 weeks ago
Chew-Seong Cheong
Mar 20, 2015

Let z = a + b i z = a + bi , then z = a + b i = 1 a 2 + b 2 = 1 a 2 + b 2 = 1 |z| = |a+bi| = 1 \quad \Rightarrow \sqrt{a^2+b^2} = 1\quad \Rightarrow a^2+b^2 = 1

Now, we have:

z z ˉ + z ˉ z = a + b i a b i + a b i a + b i = ( a + b i ) 2 + ( a b i ) 2 ( a b i ) ( a + b i ) = a 2 + 2 a b i b 2 + a 2 2 a b i b 2 a 2 + b 2 = 2 ( a 2 b 2 ) = 1 a 2 b 2 = 1 2 a 2 b 2 = ± 1 2 \left| \dfrac {z}{\bar{z}} + \dfrac{\bar{z}} {z} \right| = \left| \dfrac {a+bi}{a-bi} + \dfrac {a-bi}{a+bi} \right| = \left| \dfrac {(a+bi)^2+(a-bi)^2}{(a-bi)(a+bi)} \right| \\ = \left| \dfrac {a^2+2abi-b^2+a^2-2abi-b^2}{a^2+b^2} \right| =\left| 2(a^2-b^2) \right| = 1 \\ \Rightarrow \left| a^2-b^2 \right| = \frac {1}{2} \quad \Rightarrow a^2-b^2 = \pm \frac {1}{2}

{ a 2 + b 2 = 1 a 2 b 2 = ± 1 2 2 a 2 = { 3 2 1 2 a = { ± 3 2 ± 1 2 \Rightarrow \begin{cases} a^2+b^2 = 1 \\ a^2-b^2 = \pm \frac {1}{2} \end{cases} \quad \Rightarrow 2a^2 = \begin{cases} \frac {3}{2} \\ \frac {1}{2} \end{cases} \quad \Rightarrow a = \begin{cases} \pm \frac {\sqrt{3}}{2} \\ \pm \frac {1}{2} \end{cases}

z = 3 2 1 2 i z = 3 2 + 1 2 i z = 1 2 3 2 i z = 1 2 + 3 2 i z = 1 2 3 2 i z = 1 2 + 3 2 i z = 3 2 1 2 i z = 3 2 + 1 2 i \Rightarrow \begin{array} {llll} z = -\frac{\sqrt{3}}{2}-\frac{1}{2}i & z = -\frac{\sqrt{3}}{2}+\frac{1}{2}i & z = -\frac{1}{2} -\frac{\sqrt{3}}{2}i & z = -\frac{1}{2} +\frac{\sqrt{3}}{2}i \\ z = \frac{1}{2} -\frac{\sqrt{3}}{2}i & z = \frac{1}{2} +\frac{\sqrt{3}}{2}i & z = \frac{\sqrt{3}}{2}-\frac{1}{2}i & z = \frac{\sqrt{3}}{2}+\frac{1}{2}i \end{array}

Therefore, there are 8 \boxed{8} such complex number z z .

Mehul Kumar
Mar 20, 2015

Replace conjugate of z by 1/z and replace mod Square by x*(conjugate x). You get an eight degree polynomial.

How ? @Mehul

Parag Zode - 6 years, 2 months ago

Log in to reply

Hmm i will to write my soln frm mobile. . i am denoting conjugate of z by z' Notice z z' =1. Now replace z' by 1/z u get |z^2+z^-2|=1. Then u get |z^4+1|=1 since z not =0. Now we know x x'=|x|^2. so it impies (z^4+1)(z'^4+1)=1... (z^4+1)(z^-4+1)=1 , then u get z^8+z^4+1. now it can be easily solved resulting all roots |Z|=1.

Mehul Kumar - 6 years, 2 months ago

Log in to reply

Yeah, but you will have to check that there are no repeating roots.

Abhijeet Verma - 5 years, 9 months ago

Log in to reply

@Abhijeet Verma if it has repeated then there should be common root with 8z^7-4z^3 => only possible repeated root z^4=0 or 1/2 which is not the case

Mehul Kumar - 5 years ago

How can you do this replacement

Kumar Krish - 2 years, 5 months ago

Let z = a + b i z = a + bi ; from z = 1 |z| = 1 , we get that a 2 + b 2 = 1 a^{2} + b^{2} = 1

Now, z z + z z = 2 a 2 2 b 2 a 2 + b 2 = 2 ( a 2 b 2 ) \frac{z}{\overline{z}} + \frac{\overline{z}}{z} = \frac{2a^{2} - 2b^{2}}{a^{2} + b^{2}} = 2(a^{2} - b^{2}) ; thus, we can write:

z z + z z = 2 ( a 2 b 2 ) |\frac{z}{\overline{z}} + \frac{\overline{z}}{z}| = |2(a^{2} - b^{2})|

Thus, we have two cases:

Case 1:

{ a 2 + b 2 = 1 a 2 b 2 = 1 2 \begin{cases} a^{2} + b^{2} = 1 \\ a^{2} - b^{2} = \frac{1}{2} \end{cases}

This yields four solutions:

1 + 3 i 2 , 1 3 i 2 , 1 + 3 i 2 , 1 3 i 2 \frac{1 + \sqrt{3}i}{2}, \frac{1 - \sqrt{3}i}{2}, \frac{-1 + \sqrt{3}i}{2}, \frac{-1 - \sqrt{3}i}{2}

Case 2:

{ a 2 + b 2 = 1 a 2 + b 2 = 1 2 \begin{cases} a^{2} + b^{2} = 1 \\ - a^{2} + b^{2} = \frac{1}{2} \end{cases}

This yields four solutions:

3 + i 2 , 3 i 2 , 3 + i 2 , 3 i 2 \frac{\sqrt{3} + i}{2}, \frac{\sqrt{3} - i}{2}, \frac{-\sqrt{3} + i}{2}, \frac{-\sqrt{3} - i}{2}

Thus, we have a total of eight solutions.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...