How exactly does ( a 4 + 4 ) (a^4 + 4) help?

Algebra Level 5

( 2 4 + 1 4 ) ( 4 4 + 1 4 ) ( 19 8 4 + 1 4 ) ( 20 0 4 + 1 4 ) ( 1 4 + 1 4 ) ( 3 4 + 1 4 ) ( 19 7 4 + 1 4 ) ( 19 9 4 + 1 4 ) = ? \large{\frac{\bigg(2^4 + \frac14\bigg)\bigg(4^4 + \frac14\bigg)\ldots\bigg(198^4 + \frac14\bigg)\bigg(200^4 + \frac14\bigg)}{\bigg(1^4 + \frac14\bigg)\bigg(3^4 + \frac14\bigg)\ldots\bigg(197^4 + \frac14\bigg)\bigg(199^4 + \frac14\bigg)} = ?}

HINT : Write the expression ( a 4 + 4 ) (a^4 + 4) as a product of two factors, where each one of those factors is equal to a sum of two squares.

Bonus : Simpify the following product. k = 1 n ( 2 k ) 4 + 1 4 ( 2 k 1 ) 4 + 1 4 \large{\displaystyle \prod_{k=1}^n \frac{(2k)^4+\frac14}{(2k-1)^4+\frac14}}


The answer is 80401.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Michele Baldo
Sep 26, 2015

Rewrite the expression: 2 4 + 1 4 1 4 + 1 4 × 4 4 + 1 4 3 4 + 1 4 × 6 4 + 1 4 5 4 + 1 4 × . . . × 19 8 4 + 1 4 19 7 4 + 1 4 × 20 0 4 + 1 4 19 9 4 + 1 4 \frac{2^{4}+\frac{1}{4}}{1^{4}+\frac{1}{4}} \times \frac{4^{4}+\frac{1}{4}}{3^{4}+\frac{1}{4}} \times \frac{6^{4}+\frac{1}{4}}{5^{4}+\frac{1}{4}} \times ... \times \frac{198^{4}+\frac{1}{4}}{197^{4}+\frac{1}{4}} \times \frac{200^{4}+\frac{1}{4}}{199^{4}+\frac{1}{4}}

First focus on a general term a 4 + 1 4 a^{4}+\frac{1}{4} : a 4 + 1 4 = ( a 2 ) 2 + ( 1 2 ) 2 = ( a 2 + 1 2 ) 2 2 a 2 1 2 = ( a 2 + 1 2 ) 2 a 2 = ( a 2 + 1 2 + a ) ( a 2 + 1 2 a ) = [ a ( a + 1 ) + 1 2 ] [ a ( a 1 ) + 1 2 ] a^{4}+\frac{1}{4} = \left(a^{2}\right)^{2} + \left(\frac{1}{2}\right)^{2} = \left(a^{2}+\frac{1}{2}\right)^{2} - 2a^{2}\frac{1}{2} = \left(a^{2}+\frac{1}{2}\right)^{2} - a^{2} = \left(a^{2}+\frac{1}{2} + a\right) \left(a^{2}+\frac{1}{2} - a\right) = \left[a\left(a+1\right)+\frac{1}{2}\right]\left[a\left(a-1\right)+\frac{1}{2}\right]

Then focus on a general term of the expression: a 4 + 1 4 ( a 1 ) 4 + 1 4 = [ a ( a + 1 ) + 1 2 ] [ a ( a 1 ) + 1 2 ] [ ( a 1 ) ( ( a 1 ) + 1 ) + 1 2 ] [ ( a 1 ) ( ( a 1 ) 1 ) + 1 2 ] = [ a ( a + 1 ) + 1 2 ] [ a ( a 1 ) + 1 2 ] [ ( a 1 ) a + 1 2 ] [ ( a 1 ) ( a 2 ) + 1 2 ] = a ( a + 1 ) + 1 2 ( a 1 ) ( a 2 ) + 1 2 \frac{a^{4}+\frac{1}{4}}{(a-1)^{4}+\frac{1}{4}} = \frac{ \left[a\left(a+1\right)+\frac{1}{2}\right]\left[a\left(a-1\right)+\frac{1}{2}\right] }{ \left[\left(a-1\right)\left((a-1)+1\right)+\frac{1}{2}\right]\left[\left(a-1\right)\left((a-1)-1\right)+\frac{1}{2}\right] } = \frac{ \left[a\left(a+1\right)+\frac{1}{2}\right] \cancel{\left[a\left(a-1\right)+\frac{1}{2}\right]} }{ \cancel{\left[\left(a-1\right)a+\frac{1}{2}\right]} \left[\left(a-1\right)\left(a-2\right)+\frac{1}{2}\right] } = \frac{ a\left(a+1\right)+\frac{1}{2} }{ \left(a-1\right)\left(a-2\right)+\frac{1}{2} }

Then focus on two general consecutive terms of the expression: a 4 + 1 4 ( a 1 ) 4 + 1 4 × ( a + 2 ) 4 + 1 4 ( ( a + 2 ) 1 ) 4 + 1 4 = a ( a + 1 ) + 1 2 ( a 1 ) ( a 2 ) + 1 2 × ( a + 2 ) ( ( a + 2 ) + 1 ) + 1 2 ( ( a + 2 ) 1 ) ( ( a + 2 ) 2 ) + 1 2 = a ( a + 1 ) + 1 2 ( a 1 ) ( a 2 ) + 1 2 × ( a + 2 ) ( a + 3 ) + 1 2 ( a + 1 ) a + 1 2 = ( a + 2 ) ( a + 3 ) + 1 2 ( a 1 ) ( a 2 ) + 1 2 \frac{a^{4}+\frac{1}{4}}{(a-1)^{4}+\frac{1}{4}} \times \frac{(a+2)^{4}+\frac{1}{4}}{((a+2)-1)^{4}+\frac{1}{4}} = \frac{ a\left(a+1\right)+\frac{1}{2} }{ \left(a-1\right)\left(a-2\right)+\frac{1}{2} } \times \frac{ \left(a+2\right)\left((a+2)+1\right)+\frac{1}{2} }{ \left((a+2)-1\right)\left((a+2)-2\right)+\frac{1}{2} } = \frac{ \cancel{ a\left(a+1\right)+\frac{1}{2} } }{ \left(a-1\right)\left(a-2\right)+\frac{1}{2} } \times \frac{ \left(a+2\right)\left(a+3\right)+\frac{1}{2} }{ \cancel{ \left(a+1\right)a+\frac{1}{2} } } = \frac{ \left(a+2\right)\left(a+3\right)+\frac{1}{2} }{ \left(a-1\right)\left(a-2\right)+\frac{1}{2} }

As we can see, doing this over and over until the last term of the simplified expression all terms are cancelled out apart from the first denominator and the last numerator in the form above, hence: ( 200 ) ( 200 + 1 ) + 1 2 ( 2 1 ) ( 2 2 ) + 1 2 = 40200 + 1 2 1 2 = 80401 \frac{ \left(200\right)\left(200+1\right)+\frac{1}{2} }{ \left(2-1\right)\left(2-2\right)+\frac{1}{2} } = \frac{40200+\frac{1}{2}}{\frac{1}{2}} = \boxed{80401}

((2n)^4+1/4)/((2n-1)^4+1/4)=(8n^2+4n+1)/(8n^2-12n+5)

(13/1)(41/13)...(a/b)(804001/a)=804001

Can you please elaborate more ?

Syed Baqir - 5 years, 9 months ago

Log in to reply

Sophie-Germain!

Kartik Sharma - 5 years, 9 months ago

Log in to reply

what is Sophie-Germain ? I have no idea how to use her ideas here ..

Syed Baqir - 5 years, 9 months ago

Log in to reply

@Syed Baqir Sophie-Germain : a 4 + 4 b 4 = ( a 2 + 2 b 2 + 2 a b ) ( a 2 + 2 b 2 2 a b ) \displaystyle \text{Sophie-Germain} : \displaystyle {a}^{4} + 4{b}^{4} = ({a}^{2} + 2{b}^{2} + 2ab)({a}^{2} + 2{b}^{2} - 2ab)

Now, use it for 1 + 4 ( 2 k ) 4 1 + 4 ( 2 k 1 ) 4 \displaystyle \frac{1 + 4{(2k)}^{4}}{1 + 4{(2k-1)}^{4}} where a = 1 , b = 2 k a =1, b = 2k in the numerator and a = 1 , b = 2 k 1 \displaystyle a = 1, b = 2k-1 in the denominator.

Manipulating it,

( ( 2 k 1 ) 2 + ( 2 k ) 2 ) ( ( 2 k + 1 ) 2 + ( 2 k ) 2 ) ( ( 2 k 2 ) 2 + ( 2 k 1 ) 2 ) ( ( 2 k 1 ) 2 + ( 2 k ) 2 ) = ( ( 2 k + 1 ) 2 + ( 2 k ) 2 ) ( ( 2 k 2 ) 2 + ( 2 k 1 ) 2 ) \displaystyle \frac{({(2k-1)}^{2} + {(2k)}^{2})({(2k+1)}^{2} + {(2k)}^{2})}{({(2k-2)}^{2} + {(2k-1)}^{2})({(2k-1)}^{2} + {(2k)}^{2})} = \frac{({(2k+1)}^{2} + {(2k)}^{2})}{({(2k-2)}^{2} + {(2k-1)}^{2})}

Now, the product will get telescoped to ( 2 n + 1 ) 2 + ( 2 n ) 2 \displaystyle {(2n+1)}^{2} +{(2n)}^{2}

Kartik Sharma - 5 years, 9 months ago

Log in to reply

@Kartik Sharma Thanks , Clear explanation ,

Syed Baqir - 5 years, 9 months ago
William Isoroku
Sep 21, 2015

Factor a 4 + 1 4 a^4+\frac{1}{4} into difference of 2 squares. If you do that for each of the numbers in the parenthesis, all of the fractions will cancel out leaving

80401 2 × 2 \frac{80401}{2}\times{2}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...