How sharp are your eyes part 2

Algebra Level 4

a 3 b c + a b 2 c + a b c 2 + 1 a b c \large \dfrac{a^3bc+ab^2c+abc^2+1}{abc}

Let a , b a,b and c c be positive reals, if the minimum value of the expression above is k k , find k \lceil{k}\rceil .


The answer is 4.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

5 solutions

P C
Jan 23, 2016

F can be written as F = a 2 + b + c + 1 a b c = a 2 + b 2 + b 2 + c 2 + c 2 + 1 2 a b c + 1 2 a b c F=a^2+b+c+\frac{1}{abc}=a^2+\frac{b}{2}+\frac{b}{2}+\frac{c}{2}+\frac{c}{2}+\frac{1}{2abc}+\frac{1}{2abc} Using AM-GM inequality we get F 7 ( a b c ) 2 2 6 ( a b c ) 2 7 = 7 2 6 7 = k F\geq7\sqrt[7]{\frac{(abc)^2}{2^6(abc)^2}}=\frac{7}{\sqrt[7]{2^6}}=k k = 4 \Rightarrow\lceil{k}\rceil=4 * The equality holds when b = c = 1 2 a 3 b=c=\sqrt{\frac{1}{2a^3}}

Wow I did it the same way never thought about it at the first time.

Department 8 - 5 years, 4 months ago

I did same and nice problem

Dev Sharma - 5 years, 4 months ago
Hamza A
Jan 24, 2016

this will be tougher than the usual algebra approach,

i used calculus because i suck at AM-GM inequalities

start with simplifying the function

F = a 2 + b + c + 1 a b c F={ a }^{ 2 }+b+c+\frac { 1 }{ abc } \\

taking the gradient

F = ( 2 a 1 a 2 b c 1 1 a b 2 c 1 1 a b c 2 ) \nabla F=\begin{pmatrix} 2a-\frac { 1 }{ { a }^{ 2 }bc } \\ 1-\frac { 1 }{ a{ b }^{ 2 }c } \\ 1-\frac { 1 }{ ab{ c }^{ 2 } } \end{pmatrix}\\

our goal is to find a,b,c such that

F = 0 \nabla F=0

lets start by looking at the second and third row

1 = 1 a b c 2 = 1 a b 2 c a b c 2 = a b 2 c c = b 1 a c 3 = 1 1=\frac { 1 }{ ab{ c }^{ 2 } } =\frac { 1 }{ a{ b }^{ 2 }c } \\ ab{ c }^{ 2 }=a{ b }^{ 2 }c\\ \\ c=b\\ \\ \Longrightarrow \frac { 1 }{ a{ c }^{ 3 } } =1

from the third row we know that,

a = 1 2 c 2 3 a=\frac { 1 }{ \sqrt [ 3 ]{ 2{ c }^{ 2 } } }

substituting we get

c 3 = 2 c 2 3 { c }^{ 3 }=\sqrt [ 3 ]{ 2{ c }^{ 2 } }\\ \\

solving for c we get

c = 2 7 c=\sqrt [ 7 ]{ 2 } i used a calculator at the end,you can definitely do it by hand but i used it to save time

you will get

3.864 \approx 3.864\\ \\

so the answer is 4 \boxed{4}

You should review your solution. The minimum value is at 7 2 6 7 3.86431 \large \frac{7}{\sqrt[7]{2^6}} \approx 3.86431 .

Isaac Buckley - 5 years, 4 months ago

Log in to reply

hmmm

i`ll look for the error

Hamza A - 5 years, 4 months ago

Log in to reply

The error occurred when you wrote c 3 2 c 2 3 = 1 { c }^{ 3 }\sqrt [ 3 ]{ 2{ c }^{ 2 } } =1

You meant to write c 3 = 2 c 2 3 { c }^{ 3 }=\sqrt [ 3 ]{ 2{ c }^{ 2 } } getting the correct value c = 2 1 7 c=2^{\frac{1}{7}} .

Isaac Buckley - 5 years, 4 months ago

Log in to reply

@Isaac Buckley thanks for finding it!

Hamza A - 5 years, 4 months ago

@Isaac Buckley @Isaac Buckley

can you check my solution for this problem https://brilliant.org/problems/whos-up-to-the-challenge3/?group=tTJG88CUZHbN ?

Thanks

Hamza A - 5 years, 4 months ago

F = a 2 + b + c + 1 a b c . I f a = b = c = 1. , F = 4. Let us try to reduce say c by posetive δ . S o F = 1 2 + 1 + 1 δ + 1 1 1 ( 1 δ ) . F = 3 + 1 1 1 ( 1 δ ) δ = 3 + 1 δ + δ 1 δ = 3 + 1 + δ 1 δ δ F = 4 + δ 1 δ δ > 4. N o t e : δ 1 δ > δ , Let us try to reduce F by increasing c by posetive δ , s o 1 a b c i s r e d u c e d . S o F = 1 2 + 1 + 1 + δ + 1 1 1 ( 1 + δ ) = 3 + 1 + δ δ 1 + δ + δ . F = 4 δ 1 + δ + δ > 4. N o t e : δ > δ 1 + δ . So any of a, b, c is increased or decreased, F>4. So F=4 is the minimum. F=a^2+b+c+\dfrac 1{abc}. ~~~If~~ a=b=c=1., ~~ F=4.\\ \text{Let us try to reduce say c by posetive } \delta.~ So ~ F= 1^2 + 1 +1 - \delta + \dfrac 1{1*1*(1-\delta)}. \\ \therefore ~F=3+\dfrac 1{1*1*(1-\delta)} - \delta=3 + \dfrac {1-\delta + \delta}{1-\delta}=3+1+\dfrac \delta {1-\delta} - \delta \\ \therefore ~F=4+\dfrac \delta {1-\delta} - \delta > 4.~~~~~~~Note:~~\dfrac \delta {1-\delta} >\delta, \\ \text{Let us try to reduce F by increasing c by posetive } \delta,~so~~ \dfrac 1 {abc} ~ is ~~ reduced.\\ So ~ F= 1^2 + 1 +1 + \delta + \dfrac 1{1*1*(1+\delta)} =3+\dfrac{1+\delta - \delta}{1+\delta} + \delta. \\ \therefore ~F=4-\dfrac \delta {1+\delta} + \delta>4. ~~~~~~~~~Note:~~\delta>\dfrac \delta {1+\delta}.\\ \text{So any of a, b, c is increased or decreased, F>4. So F=4 is the minimum.}

Which method is this?

Sarthak Tanwani - 5 years, 4 months ago

Log in to reply

This is the basic method to show minimum or maximum.

Niranjan Khanderia - 5 years, 4 months ago
Prasath M
Feb 4, 2016

substituting a=1,b=1,c=1. answer is 4

dude that's because i let the answer be k \lceil{k}\rceil

P C - 5 years, 4 months ago

With my own principle, let all the variables be equal to one for the minimum..

Equating all variables to often give extreme values, but under what condition ? It is not always. Can some one help?

Niranjan Khanderia - 5 years, 4 months ago

Log in to reply

it only works for symmetrical inequality. This one's not cause the equality holds when b = c = 1 2 a 3 b=c=\sqrt{\frac{1}{2a^3}} so assuming all variables are equal is wrong

P C - 5 years, 4 months ago

Log in to reply

Thank you.

Niranjan Khanderia - 5 years, 4 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...