How would you solve it -Part 2

Calculus Level 5

0 ( 1 + x 4 x 2 ) d x = ( Γ ( 1 b ) ) a c π d \large \displaystyle \int_0^{\infty}\left(\sqrt{1+x^4} -x^2 \right) \mathrm{d}x = \dfrac{\left(\Gamma\left(\frac{1}{b}\right) \right)^a}{c\pi^d}

If the above equation holds true for positive integers a , b , c , a,b,c, ,and a real number d d where Γ \Gamma is the Gamma function, find the value of ( a + b + c + 2 d ) 2 (a+b+c+2d)^2 .


The answer is 169.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Similar solution to Kartik Sharma 's, given more details.

I = 0 ( 1 + x 4 x 2 ) d x [ Let x 2 = tan θ d x = sec 2 θ 2 tan θ d θ ] = 0 π 2 ( 1 + tan 2 θ tan θ ) ˙ sec 2 θ 2 tan θ d θ = 1 2 0 π 2 sec 3 θ tan θ sec 2 θ tan θ d θ = 1 2 0 π 2 sin 1 2 θ cos 5 2 θ sin 1 2 θ cos 5 2 θ d θ [ 0 π 2 s i n m θ cos n d θ = 1 2 B ( 1 2 ( m + 1 ) , 1 2 ( n + 1 ) ) ] = 1 4 [ B ( 1 4 ) B ( 3 4 ) B ( 1 4 ) B ( 3 4 ) ] [ B ( x , y ) = Γ ( x ) Γ ( y ) Γ ( x + y ) B ( 1 4 ) B ( 3 4 ) = 0 ] = 1 4 [ Γ ( 1 4 ) Γ ( 3 4 ) Γ ( 1 4 3 4 ) 0 ] [ Γ ( 1 + x ) = x Γ ( x ) , x = 3 4 Γ ( 3 4 ) = 4 3 Γ ( 1 4 ) ] = 1 4 [ Γ ( 1 4 ) ( 4 3 Γ ( 1 4 ) ) Γ ( 1 2 ) ] [ Γ ( 1 + x ) = x Γ ( x ) , x = 1 2 Γ ( 1 2 ) = 2 Γ ( 1 2 ) = 2 π ] = ( Γ ( 1 4 ) ) 2 6 π \begin{aligned} I & = \int_0^{\infty} \left(\sqrt{1+x^4} - x^2 \right) dx & \small \color{#3D99F6}{\left[\text{Let } x^2 = \tan \theta \quad \Rightarrow dx = \frac{\sec^2 \theta}{2\sqrt{\tan \theta}} d \theta\right]} \\ & = \small \int_0^{\frac{\pi}{2}} \left(\sqrt{1+\tan^2 \theta} - \tan \theta \right)\dot{} \frac{\sec^2 \theta}{2\sqrt{\tan \theta}} d \theta \\ & = \small \frac{1}{2} \int_0^{\frac{\pi}{2}} \frac{\sec^3 \theta - \tan \theta \sec^2 \theta}{\sqrt{\tan \theta}} d \theta \\ & = \small \frac{1}{2} \int_0^{\frac{\pi}{2}} \color{#3D99F6} {\sin^{-\frac{1}{2}} \theta \cos^{-\frac{5}{2}} \theta} - \color{#3D99F6} {\sin^{\frac{1}{2}} \theta \cos^{-\frac{5}{2}} \theta} \space d \theta & \small \color{#3D99F6}{\left[ \int_0^{\frac{\pi}{2}} sin^{m}\theta \cos^{n} d\theta = \frac{1}{2}B \left( \frac{1}{2}(m+1), \frac{1}{2}(n+1) \right)\right]} \\ & = \small \dfrac{1}{4} \left[ \color{#3D99F6} {B\left(\frac{1}{4} \right) B\left(-\frac{3}{4} \right)} - \color{#D61F06}{B\left(-\frac{1}{4} \right) B\left(-\frac{3}{4} \right)} \right] & \small \left[ \color{#3D99F6}{B(x,y) = \frac{\Gamma(x) \Gamma(y)}{\Gamma(x+y)}} \quad \color{#D61F06}{B\left(-\frac{1}{4} \right) B\left(-\frac{3}{4} \right) = 0} \right] \\ & = \small \frac{1}{4} \left[ \frac{\Gamma \left( \frac{1}{4} \right) \color{#3D99F6}{\Gamma \left(- \frac{3}{4} \right)}} {\color{#D61F06}{\Gamma \left( \frac{1}{4} - \frac{3}{4} \right)}} - 0 \right] & \small \color{#3D99F6} {\left[ \Gamma(1+x)= x \Gamma(x), \quad x = - \frac{3}{4} \quad \Rightarrow \Gamma \left(-\frac{3}{4} \right) = - \frac{4}{3} \Gamma \left(\frac{1}{4} \right)\right]} \\ & = \small \frac{1}{4} \left[ \frac{\Gamma \left( \frac{1}{4} \right) \color{#3D99F6}{\left( - \frac{4}{3} \Gamma \left(\frac{1}{4} \right) \right)}} {\color{#D61F06}{\Gamma \left( - \frac{1}{2} \right)}} \right] & \small \color{#D61F06} {\left[ \Gamma(1+x)= x \Gamma(x), \space x = - \frac{1}{2} \space \Rightarrow \Gamma \left(-\frac{1}{2} \right) = - 2 \Gamma \left(\frac{1}{2} \right) = - 2\sqrt{\pi}\right]} \\ & = \dfrac{\left(\Gamma \left( \frac{1}{4} \right) \right)^2}{6\sqrt{\pi}} \end{aligned}

Therefore, ( a + b + c + 2 d ) 2 = ( 2 + 4 + 6 + 2 × 1 2 ) 2 = 169 (a+b+c+2d)^2 = \left(2+4+6+2\times \frac{1}{2} \right)^2 = \boxed{169}

@Chew-Seong Cheong sir please see the report and edit your solution accordingly.

Aditya Kumar - 5 years, 8 months ago

Log in to reply

Got it. I have amended the solution.

Chew-Seong Cheong - 5 years, 8 months ago

sir, i would like to ask u the same question that beta function is defined for R e ( x ) > 0 Re(x)>0 and R e ( y ) > 0 Re(y)>0 . Here we solved taking the negative value, is it correct to do so?? link

Tanishq Varshney - 5 years, 8 months ago

Log in to reply

Beta function is defined for negative real x x and y y see the graphics in this link . The Wikipedia link definition means that if x x and y y are complex, then Beta function is only defined for ( x ) > 0 \Re(x) > 0 and ( y ) > 0 \Re(y) > 0 .

Chew-Seong Cheong - 5 years, 8 months ago

Log in to reply

ok, sir all real numbers are set of complex numbers and we can write 3 -3 as 3 + 0 ι -3+0 \iota now the real part is negative. Now???

Tanishq Varshney - 5 years, 8 months ago

Log in to reply

@Tanishq Varshney The graphs clearly show that Beta function is defined for negative x x . Wolfram Alpha also returns the same result. In the same Wolfram link. It is shown that [ z 1 ] > 0 \Re[z_1] > 0 and [ z 2 ] > 0 \Re[z_2] >0 . z z is used instead of x x and *y). How else can we show this fact? B ( x , y ) = Γ ( x ) Γ ( y ) Γ ( x + y ) B(x,y) = \dfrac{\Gamma(x)\Gamma(y)}{\Gamma(x+y)} . Gamma function is defined for negative real x x .

Chew-Seong Cheong - 5 years, 8 months ago

Log in to reply

@Chew-Seong Cheong ok now i understood , btw thanx for the help :)

Tanishq Varshney - 5 years, 8 months ago

@Tanishq Varshney check the answer of your problem, I think it's wrong

Kunal Gupta - 5 years, 8 months ago

@Chew-Seong Cheong , please correct your latex.

Vilakshan Gupta - 1 year ago
Kartik Sharma
Oct 1, 2015

Nice problem!

0 ( 1 + x 4 x 2 ) d x \displaystyle \int_{0}^{\infty}{\left(\sqrt{1+x^4} - x^2\right) \ dx}

Substitute x 2 = tan θ x^2 = \tan\theta , d x = sec 2 θ d θ 2 tan θ \displaystyle dx = \frac{\sec^2\theta \ d\theta}{2\sqrt{\tan\theta}}

= 0 π / 2 sec θ tan θ 2 tan θ sec 2 θ d θ \displaystyle = \int_{0}^{\pi/2}{\frac{\sec\theta - \tan\theta}{2\sqrt{\tan\theta}} \sec^2\theta \ d\theta}

= 1 4 2 0 π / 2 ( cos 5 / 2 θ sin 1 / 2 θ cos 5 / 2 θ sin 1 / 2 θ ) d θ \displaystyle = \frac{1}{4} 2\int_{0}^{\pi/2}{\left({\cos}^{-5/2}\theta {\sin}^{-1/2}\theta - {\cos}^{-5/2}\theta {\sin}^{1/2}\theta\right) \ d\theta}

= 1 4 2 0 π / 2 ( cos 2 ( 3 / 4 ) 1 θ sin 2 ( 1 / 4 ) 1 θ cos 2 ( 3 / 4 ) 1 θ sin 2 ( 3 / 4 ) 1 θ ) d θ \displaystyle = \frac{1}{4} 2\int_{0}^{\pi/2}{\left({\cos}^{2(-3/4) -1}\theta {\sin}^{2(1/4)-1}\theta - {\cos}^{2(-3/4)-1}\theta {\sin}^{2(3/4)-1}\theta\right) \ d\theta}

and we know that 2 0 π / 2 ( cos 2 x 1 θ sin 2 y 1 θ ) d θ = B ( x , y ) \displaystyle 2 \int_{0}^{\pi/2}{\left({\cos}^{2x -1}\theta {\sin}^{2y-1}\theta\right) \ d\theta} = B(x,y) , B ( x , y ) \displaystyle B(x,y) is the Beta function.

and hence

= 1 4 ( B ( 3 4 , 1 4 ) B ( 3 4 , 3 4 ) ) = Γ ( 3 4 ) Γ ( 1 4 ) 8 π = 4 3 Γ ( 1 4 ) 2 8 π = Γ ( 1 4 ) 2 6 π \displaystyle = \frac{1}{4} \left(B\left(\frac{-3}{4}, \frac{1}{4}\right) - B\left(\frac{-3}{4}, \frac{3}{4}\right)\right) = - \frac{\Gamma\left(\frac{-3}{4}\right) \Gamma\left(\frac{1}{4}\right)}{8\sqrt{\pi}} = \frac{4}{3} \frac{\Gamma\left(\frac{1}{4}\right)^2}{8\sqrt{\pi}} = \frac{\Gamma\left(\frac{1}{4}\right)^2}{6\sqrt{\pi}}

I did the same but i gotta feeling that it is wrong because in wikipedia it is mentioned that for beta function R e ( x ) > 0 , R e ( y ) > 0 Re(x)>0,Re(y)>0 but in this case u got them negative. Can u explain , do correct me if i am wrong. Wikipedia link

Tanishq Varshney - 5 years, 8 months ago

Log in to reply

@Upanshu Gupta ur suggestion and solution is also required. Plz reply

Tanishq Varshney - 5 years, 8 months ago

Log in to reply

@Tanishq Varshney I did it the same way @Kartik Sharma did it(+1)! Also, but I think that the definition of Beta Function in terms of Gamma Function doesn't(?) have any restrictions like this.Maybe I'm wrong, but numerically integrating above gives the same answer so I think it's correct

Kunal Gupta - 5 years, 8 months ago

Log in to reply

@Kunal Gupta Ok should i or u can post a note regarding it and ask the other members too about it??

Tanishq Varshney - 5 years, 8 months ago

Log in to reply

@Tanishq Varshney @Tanishq Varshney You're most welcome to do that!

Kunal Gupta - 5 years, 8 months ago

Log in to reply

@Kunal Gupta No wait if u r free we can discuss it here. I used wolfram alpha it shows 0 π 2 sin 7 2 ( x ) d x \large{\displaystyle \int^{\frac{\pi}{2}}_{0} \sin^{-\frac{7}{2}} (x) dx} does not converges. But if we use the method above we can evaluate it i guess.

Tanishq Varshney - 5 years, 8 months ago

Log in to reply

@Tanishq Varshney The individual parts of the integral do not converge (look at the original function, does the integral from 0 to ∞ of √(1+x⁴) converge? Obviously not. But the difference of the two functions creates a convergent integral.

Jack Lam - 4 years, 11 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...