Non - Linear Equations

Algebra Level 5

{ x y z = 42 y z x = 6 z x y = 30 \begin{cases} x - \sqrt{yz} = 42\\ y - \sqrt{zx} = 6\\ z - \sqrt{xy} = -30\end{cases}

The real ordered triple ( x , y , z ) (x,y,z) satisfies the system of equations above. Find the value of x + y + z x+y+z .


The problem is not mine. Credits to the owner.


The answer is 84.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Mark Hennings
Nov 5, 2016

If we put x = 6 a , y = 6 b , z = 6 c x = 6a, y = 6b, z = 6c , and subtract the second equation from the first, and the third from the second, yields ( a b ) ( a + b + c ) = 6 = ( b c ) ( a + b + c ) (\sqrt{a}-\sqrt{b})(\sqrt{a}+\sqrt{b}+ \sqrt{c}) \; = \; 6 \; = \; (\sqrt{b}-\sqrt{c})(\sqrt{a}+\sqrt{b}+ \sqrt{c}) so that a b = b c \sqrt{a}-\sqrt{b} = \sqrt{b}-\sqrt{c} . Substituting this into the second equation gives 1 = b a c = 1 4 ( a + c ) 2 a c = 1 4 ( a c ) 2 1 \; = \; b - \sqrt{ac} \; = \; \tfrac14(\sqrt{a}+\sqrt{c})^2 - \sqrt{ac} \; = \; \tfrac14(\sqrt{a}-\sqrt{c})^2 and hence a = c ± 2 \sqrt{a} = \sqrt{c} \pm 2 . Thus 7 = a b c = ( c ± 2 ) 2 1 2 ( a + c ) c = ( c ± 2 ) 2 1 2 ( 2 c ± 2 ) c = 4 ± 3 c 7 \; = \; a - \sqrt{bc} \; = \; (\sqrt{c} \pm 2)^2 - \tfrac12(\sqrt{a}+\sqrt{c})\sqrt{c} \; = \; (\sqrt{c} \pm 2)^2 - \tfrac12(2\sqrt{c} \pm 2)\sqrt{c} \; = \; 4 \pm 3\sqrt{c} and so c = ± 1 \sqrt{c} = \pm 1 . Thus we must take the + + option out of ± \pm , and obtain a = 3 , b = 2 , c = 1 \sqrt{a}=3,\sqrt{b}=2,\sqrt{c}=1 , and hence x = 54 , y = 24 , c = 6 x=54, y=24,c=6 , making the answer 54 + 24 + 6 = 84 54+24+6 = \boxed{84} .

Christian Daang
Nov 3, 2016

let a 2 = x , b 2 = y , c 2 = z a^{2} = x, b^{2} = y, c^{2} = z

  • a 2 b c = 42 a^{2} - bc = 42 (1)
  • b 2 c a = 6 b^{2} - ca = 6 (2)
  • c 2 a b = 30 c^{2} - ab = -30 (3)

from (1)

  • a 2 = 42 + b c a^{2} = 42+bc

solving a a from (2)

  • a = b 2 6 c a = \dfrac{b^{2} - 6}{c} (4)

solving a a from (3)

  • a = c 2 + 30 b a = \dfrac{c^{2} + 30}{b} (5)

multiplying (4) and (5) and equating it to (1)

=> a 2 = ( b 2 6 ) ( c 2 + 30 ) b c = 42 + b c a^{2} = \dfrac{(b^{2} - 6)(c^{2} + 30)}{bc} = 42+bc

=> ( b c ) 2 6 c 2 + 30 b 2 180 = 42 b c + ( b c ) 2 (bc)^{2} - 6c^{2} + 30b^{2} - 180 = 42bc + (bc)^{2}

=> 5 b 2 c 2 30 = 7 b c 5b^{2} - c^{2} - 30 = 7bc

=> 5 y z = 30 + 7 y z 5y - z = 30 + 7\sqrt{yz}

since y z = x 42 \sqrt{yz} = x - 42

=> 5 y z = 30 + 7 ( x 42 ) 5y-z = 30 + 7(x-42) (yey, eq. 1)

from (2)

  • b 2 = 6 + c a b^{2} = 6 + ca

solving b b from (1)

  • b = a 2 42 c b = \dfrac{a^{2} - 42}{c} (6)

solving b b from (3)

  • b = c 2 + 30 a b = \dfrac{c^{2} + 30}{a} (7)

multiplying (6) and (7) and equating it to (2)

=> b 2 = ( a 2 42 ) ( c 2 + 30 ) c a = 6 + c a b^{2} = \dfrac{(a^{2} - 42)(c^{2} + 30)}{ca} = 6+ca

=> ( a c ) 2 42 c 2 + 30 a 2 1260 = 6 c a + ( c a ) 2 (ac)^{2} - 42c^{2} + 30a^{2} - 1260 = 6ca + (ca)^{2}

=> 5 a 2 7 c 2 210 = c a 5a^{2} - 7c^{2} - 210 = ca

=> 5 x 7 z = 210 + z x 5x - 7z = 210 + \sqrt{zx}

since z x = y 6 \sqrt{zx} = y - 6

=> 5 x 7 z = 210 + ( y 6 ) 5x - 7z = 210 + (y-6) (yey, eq. 2)

from (3)

  • c 2 = a b 30 c^{2} = ab - 30

solving c c from (1)

  • c = a 2 42 b c = \dfrac{a^{2} - 42}{b} (8)

solving c c from (2)

  • c = b 2 6 a c = \dfrac{b^{2} - 6}{a} (9)

multiplying (8) and (9) and equating it to (3)

=> c 2 = ( a 2 42 ) ( b 2 6 ) a b = a b 30 c^{2} = \dfrac{(a^{2} - 42)(b^{2} - 6)}{ab} = ab - 30

=> ( a b ) 2 42 b 2 6 a 2 + 252 = ( a b ) 2 30 a b (ab)^{2} - 42b^{2} - 6a^{2} + 252 = (ab)^{2} - 30ab

=> a 2 + 7 b 2 42 = 5 a b a^{2} + 7b^{2} - 42 = 5ab

=> x + 7 y = 42 + 5 x y x + 7y = 42 + 5\sqrt{xy}

since x y = z + 30 \sqrt{xy} = z+30

=> x + 7 y = 42 + 5 ( z + 30 ) x + 7y = 42 + 5(z+30) (yey, eq. 3)

Equating the 3 (yey) equations, it will give:

( x , y , z ) = ( 54 , 24 , 6 ) (x,y,z) = (54, 24, 6)

and hence, x + y + z = 54 + 24 + 6 = 84 x+y+z = 54+24+6 = \boxed{84} .

From where did u get this awesome question

genis dude - 4 years, 7 months ago
Genis Dude
Nov 5, 2016

Let,

√x be a

√y be c

√z be b

Therefore,

c²-ab=6 (eq 1)

b²-ac=-30 (eq 2)

a²-bc=42 (eq 3)

Subtracting eq 2 from eq 1

c²-b²+ac-ab=36

by factorising

(c-b)(a+b+c)=36

Subtracting eq 2 from eq 3

(a-b)(a+b+c)=72

Therefore, 2(c-b)=a-b

→c=(a+b)/2

Substituting c value in eq 1

((a+b)/2)²-ab=6

Solving for a and b we get

(a-b)²=24

→a-b=√24 as a>b

→a=√24+b (eq 4)

Substituting value of c in eq 3 give

(a-b)(2a+b)=84

Substituting 'a' from eq 4

√24(2√24+3b)=84

Solve b by substituting b=√z

z=6 and b=√6

By substituting the value of b we get x=54 and y=24

Therefore x+y+z =6+54+24=84.

Question, how does ( a + b 2 ) 2 a b = 6 (a + \dfrac{b}{2})^{2} - ab = 6 becomes ( a b ) 2 = 24 (a-b)^{2} = 24 ?

and where will be z = 6 z = 6 or b = 6 b = \sqrt{6} substituted?

Christian Daang - 4 years, 7 months ago

Log in to reply

(a+b/2)²-ab=6

Multiply 4 on both sides

(a+b)²-4ab=24

→a²+b²+2ab-4ab=24

Therefore (a-b)²=24

genis dude - 4 years, 7 months ago

Log in to reply

ok ok, i thought it is ( a + b 2 ) 2 a b = 6 (a + \dfrac{b}{2})^{2} - ab = 6 but it should be ( a + b 2 ) 2 a b = 6 (\dfrac{a+b}{2})^{2} - ab = 6 .

I'm sorry.

Christian Daang - 4 years, 7 months ago

Substituting b value in a= √24+b gives a.And substituting a and b value in a+b/2=c gives c.

genis dude - 4 years, 7 months ago

Log in to reply

ask again, uhm, if

( a b ) 2 = 24 (a-b)^{2} = 24 ,

a b = 24 , a > b \rightarrow a-b=\sqrt{24}, a>b

a = 24 + b \rightarrow a = \sqrt{24}+b (eq 4)

as the value of b is 6 \sqrt{6} , then, the value of a will be like 24 + 6 \sqrt{24} + \sqrt{6} ?

Christian Daang - 4 years, 7 months ago

Log in to reply

@Christian Daang Ya then ,

√x = √24+√6

By squaring,

X= 24 + 6 +2√144

X=30 +24

Therefore,x=54

genis dude - 4 years, 7 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...