x → 0 lim tan x e − ( 1 + x ) x 1
If the limit above is equal to A × e B , where A and B are rational numbers, find the value of A + B .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Great! You just need to find the first derivative of ( 1 + x ) x 1 . Because by L'Hopital rule, the limit becomes − d x d [ ( 1 + x ) x 1 ] x = 0 .
Hi .. Ayush ! How was your Mains , I mean how much you are getting ? I see You are Using Brillinat after long time ...
And I also use Expansion ... But I did not know proof of this expansion .. I just remembered it ... But Can You Please Tell what it's proof ...?
Log in to reply
Use Taylor's series expansion at x=0.
and i have passed 12th in 2011
Log in to reply
oopes sorry .. I was asuumed from very begening that you are also perapring for Jee and all that stuff... Sorry ! Anyway where do you study ... what branch ? I know that You have really cool problem solving skills ..!
Log in to reply
@Karan Shekhawat – Now i have added the proof and i am in ISM Dhanbad.
Nice solution #ayush
x → 0 lim tan x e − ( 1 + x ) x 1 x → 0 lim tan x e − e x ln ( 1 + x ) x → 0 lim tan x − e ( e x ln ( 1 + x ) − 1 − 1 ) x → 0 lim tan x ( x ln ( 1 + x ) − 1 ) x − e ( e x ln ( 1 + x ) − 1 − 1 ) ( x ln ( 1 + x ) − 1 ) x ( x → 0 lim − e ) ( x → 0 lim ( x ln ( 1 + x ) − 1 ) ( e x ln ( 1 + x ) − 1 − 1 ) ) ( x → 0 lim tan x x ) ( x → 0 lim x 2 ln ( 1 + x ) − x ) ( − e ) ( x → 0 lim x 2 ln ( 1 + x ) − x ) ( − e ) ( x → 0 lim x 2 − 2 x 2 + 3 x 3 − 4 x 4 + … ) ( − e ) ( x → 0 lim 2 − 1 + 3 x − 4 x 2 + … ) 2 e
Well you had to use the expansion at last . ;) Btw nice solution.
Log in to reply
I could've avoided it by using LH Rule, however the utility of expansion can't be questioned.
@Keshav Tiwari Could you please post a solution to Chemistry and Calculus ? Many thanks!
Log in to reply
@Ishan Dasgupta Samarendra Done!
Log in to reply
@Keshav Tiwari – @Keshav Tiwari Ah, both of us have solved it the same way! Really loved the question!
Nice solution.
uffff i had an orgasm with your solution
First let's get rid of that tan ( x )
L = x → 0 lim x tan x x e − ( 1 + x ) 1 / x = x → 0 lim x e − ( 1 + x ) 1 / x
Method 1 (L'hopital's rule)
The function is in 0 0 form. So we can use l'Hopital's rule. Find the derivative of ( 1 + x ) 1 / x using logarithmic differentiation.
d x d ( 1 + x ) 1 / x = ( 1 + x ) 1 / x ( x 2 ( 1 + x ) x − ( 1 + x ) ln ( 1 + x ) )
and d x d x = 1
Therefore, from l'Hopital's rule
L = x → 0 lim − ( 1 + x ) 1 / x ( x 2 ( 1 + x ) x − ( 1 + x ) ln ( 1 + x ) ) = − e x → 0 lim x 2 ( 1 + x ) x − ( 1 + x ) ln ( 1 + x )
Use l'Hopital's rule again (because 0/0 form)
L = − e x → 0 lim 2 x ( 1 + x ) + x 2 − ln ( 1 + x ) = − e ( 2 − 1 ) = 2 e
Method 2 (Maclaurin Series)
You may remember for x → 0
( 1 + x ) 1 / x = e − 2 e x + 2 4 1 1 e x 2 − O ( x 3 )
e − ( 1 + x ) 1 / x = 2 e x − 2 4 1 1 e x 2 + O ( x 3 )
x e − ( 1 + x ) 1 / x = 2 e − 2 4 1 1 e x + O ( x 2 )
And finally x → 0 lim x e − ( 1 + x ) 1 / x = 2 e
If you don't remember the maclaurin series, it's usually better to use l'Hopital's rule since you'd have to find the derivatives anyway. But if you insist you can still find the first two terms of the maclaurin series (that's all we need to solve the problem) without the derivatives in the following manner.
In a sufficiently small neighbourhood of 0 (since x → 0 ), we can use the binomial expansion
( 1 + x ) 1 / x = 1 + 1 ! 1 + 2 ! 1 ( 1 − x ) + 3 ! 1 ( 1 − x ) ( 1 − 2 x ) + 4 ! 1 ( 1 − x ) ( 1 − 2 x ) ( 1 − 3 x ) + …
= ( 1 + 1 ! 1 + 2 ! 1 + 3 ! 1 + … ) − ( 2 ! 1 + 3 ! 1 + 3 ! 2 + 4 ! 1 + 4 ! 2 + 4 ! 3 + 5 ! 1 + … ) x + O ( x 2 )
= e − ( r = 2 ∑ ∞ r ! ∑ k = 1 r − 1 k ) x + O ( x 2 )
= e − ( r = 2 ∑ ∞ 2 ( r ! ) ( r − 1 ) ( r ) ) x + O ( x 2 )
= e − ( 2 1 r = 2 ∑ ∞ ( r − 2 ) ! 1 ) x + O ( x 2 )
= e − 2 e x + O ( x 2 )
And you can solve the problem as shown above.
L = x → 0 lim tan x e − ( 1 + x ) x 1 L = x → 0 lim x + 3 x 3 + 5 2 x 5 + ⋯ e − ( e − 2 e x + 1 2 1 1 e x 2 + O ( x 3 ) ) L = x → 0 lim x ( 1 + 3 x 2 + 5 2 x 4 + ⋯ ) x e ( 2 1 − 1 2 1 1 x + O ( x 3 ) ) L = 2 e = 2 1 × e 1 Hence A + B = 1 + 2 1 = 2 3 = 1 . 5
Problem Loading...
Note Loading...
Set Loading...
It is in (0/0) form so we can use L Hospital's rule.But it will be more easier if you use the expansion
( 1 + x ) x 1 = e − 2 e x + 2 4 1 1 e x 2 − 1 6 7 e x 3 + . . . ⇒ y = e − ( 1 + x ) x 1 = 2 e x − 2 4 1 1 e x 2 + 1 6 7 e x 3 − . . . ⇒ d x d y = 2 e − 1 2 1 1 e x + 1 6 2 1 e x 2 − . . . ⇒ x → 0 l im tan x e − ( 1 + x ) x 1 = x → 0 l im sec 2 x 2 e − 1 2 1 1 e x + 1 6 2 1 e x 2 − . . . ( L H o s p i t a l ′ s r u l e ) = 2 e = 1 . 3 5 9
I am adding proof for used expansion,
f ( x ) = y = ( 1 + x ) 1 / x ⇒ x → 0 l im y = e ln y = x ln ( 1 + x ) = 1 − 2 x + 3 x 2 − 4 x 3 + 5 x 4 − . . . ⇒ y 1 = y ( 2 − 1 + 3 2 x − 4 3 x 2 + 5 4 x 3 − . . . ) ⇒ x → 0 l im y 1 = x → 0 l im y ( 2 − 1 + 3 2 x − 4 3 x 2 + 5 4 x 3 − . . . ) = 2 − e N o w , y 2 = y 1 ( 2 − 1 + 3 2 x − 4 3 x 2 + 5 4 x 3 − . . . ) + y ( 3 2 − 4 6 x + 5 1 2 x 2 − . . . ) ⇒ x → 0 l im y 2 = x → 0 l im y 1 ( 2 − 1 + 3 2 x − 4 3 x 2 + 5 4 x 3 − . . . ) + x → 0 l im y ( 3 2 − 4 6 x + 5 1 2 x 2 − . . . ) = ( 2 − e ) ( 2 − 1 ) + e ( 3 2 ) = 1 2 1 1 e & y 3 = y 2 ( 2 − 1 + 3 2 x − 4 3 x 2 + 5 4 x 3 − . . . ) + y 1 ( 3 2 − 4 6 x + 5 1 2 x 2 − . . . ) + y 1 ( 3 2 − 4 6 x + 5 1 2 x 2 − . . . ) + y ( 4 − 6 + 5 2 4 x − . . . ) = y 2 ( 2 − 1 + 3 2 x − 4 3 x 2 + 5 4 x 3 − . . . ) + 2 y 1 ( 3 2 − 4 6 x + 5 1 2 x 2 − . . . ) + y ( 4 − 6 + 5 2 4 x − . . . ) ⇒ x → 0 l im y 3 = x → 0 l im y 2 ( 2 − 1 + 3 2 x − 4 3 x 2 + 5 4 x 3 − . . . ) + x → 0 l im 2 y 1 ( 3 2 − 4 6 x + 5 1 2 x 2 − . . . ) + x → 0 l im y ( 4 − 6 + 5 2 4 x − . . . ) = ( 1 2 1 1 e ) ( 2 − 1 ) + 2 ( 2 − e ) ( 3 2 ) + e ( 4 − 6 ) = 8 − 2 1 e o r x → 0 l im f ( x ) = e , x → 0 l im f ′ ( x ) = 2 − e , x → 0 l im f ′ ′ ( x ) = 1 2 1 1 e & x → 0 l im f ′ ′ ′ ( x ) = 8 − 2 1 e f o r T a y l o r ′ s s e r i e s e x p a n s i o n a t x = 0 , f ( x ) = f ( 0 ) + 1 ! f ′ ( 0 ) + 2 ! f ′ ′ ( 0 ) + 3 ! f ′ ′ ′ ( 0 ) + . . . ⇒ y = ( 1 + x ) 1 / x = e − 2 e x + 2 4 1 1 e x 2 − 1 6 7 e x 3 + . . .