I don't think limits - U. Bolt

Calculus Level 4

lim x 0 e ( 1 + x ) 1 x tan x \large \displaystyle \lim_{x \to 0} \frac{e-(1+x)^{\frac{1}{x}}}{\tan x}

If the limit above is equal to A × e B A \times e^B , where A A and B B are rational numbers, find the value of A + B A+B .


The answer is 1.5.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

Ayush Verma
Apr 23, 2015

It is in (0/0) form so we can use L Hospital's rule.But it will be more easier if you use the expansion

( 1 + x ) 1 x = e e x 2 + 11 e x 2 24 7 e x 3 16 + . . . y = e ( 1 + x ) 1 x = e x 2 11 e x 2 24 + 7 e x 3 16 . . . d y d x = e 2 11 e x 12 + 21 e x 2 16 . . . l i m x 0 e ( 1 + x ) 1 x tan x = l i m x 0 e 2 11 e x 12 + 21 e x 2 16 . . . sec 2 x ( L H o s p i t a l s r u l e ) = e 2 = 1.359 { \left( 1+x \right) }^{ \cfrac { 1 }{ x } }=e-\cfrac { ex }{ 2 } +\cfrac { 11e{ x }^{ 2 } }{ 24 } -\cfrac { 7e{ x }^{ 3 } }{ 16 } +...\\ \\ \Rightarrow y=e-{ \left( 1+x \right) }^{ \cfrac { 1 }{ x } }=\cfrac { ex }{ 2 } -\cfrac { 11e{ x }^{ 2 } }{ 24 } +\cfrac { 7e{ x }^{ 3 } }{ 16 } -...\\ \\ \Rightarrow \cfrac { dy }{ dx } =\cfrac { e }{ 2 } -\cfrac { 11e{ x } }{ 12 } +\cfrac { 21e{ x }^{ 2 } }{ 16 } -...\\ \\ \Rightarrow \underset { x\rightarrow 0 }{ lim } \cfrac { e-{ \left( 1+x \right) }^{ \cfrac { 1 }{ x } } }{ \tan { x } } \\ \\ \quad =\underset { x\rightarrow 0 }{ lim } \cfrac { \cfrac { e }{ 2 } -\cfrac { 11e{ x } }{ 12 } +\cfrac { 21e{ x }^{ 2 } }{ 16 } -... }{ \sec ^{ 2 }{ x } } \quad \left( L\quad Hospital'srule \right) \\ \\ \quad =\cfrac { e }{ 2 } =1.359

I am adding proof for used expansion,

f ( x ) = y = ( 1 + x ) 1 / x l i m x 0 y = e ln y = ln ( 1 + x ) x = 1 x 2 + x 2 3 x 3 4 + x 4 5 . . . y 1 = y ( 1 2 + 2 x 3 3 x 2 4 + 4 x 3 5 . . . ) l i m x 0 y 1 = l i m x 0 y ( 1 2 + 2 x 3 3 x 2 4 + 4 x 3 5 . . . ) = e 2 N o w , y 2 = y 1 ( 1 2 + 2 x 3 3 x 2 4 + 4 x 3 5 . . . ) + y ( 2 3 6 x 4 + 12 x 2 5 . . . ) l i m x 0 y 2 = l i m x 0 y 1 ( 1 2 + 2 x 3 3 x 2 4 + 4 x 3 5 . . . ) + l i m x 0 y ( 2 3 6 x 4 + 12 x 2 5 . . . ) = ( e 2 ) ( 1 2 ) + e ( 2 3 ) = 11 e 12 & y 3 = y 2 ( 1 2 + 2 x 3 3 x 2 4 + 4 x 3 5 . . . ) + y 1 ( 2 3 6 x 4 + 12 x 2 5 . . . ) + y 1 ( 2 3 6 x 4 + 12 x 2 5 . . . ) + y ( 6 4 + 24 x 5 . . . ) = y 2 ( 1 2 + 2 x 3 3 x 2 4 + 4 x 3 5 . . . ) + 2 y 1 ( 2 3 6 x 4 + 12 x 2 5 . . . ) + y ( 6 4 + 24 x 5 . . . ) l i m x 0 y 3 = l i m x 0 y 2 ( 1 2 + 2 x 3 3 x 2 4 + 4 x 3 5 . . . ) + l i m x 0 2 y 1 ( 2 3 6 x 4 + 12 x 2 5 . . . ) + l i m x 0 y ( 6 4 + 24 x 5 . . . ) = ( 11 e 12 ) ( 1 2 ) + 2 ( e 2 ) ( 2 3 ) + e ( 6 4 ) = 21 e 8 o r l i m x 0 f ( x ) = e , l i m x 0 f ( x ) = e 2 , l i m x 0 f ( x ) = 11 e 12 & l i m x 0 f ( x ) = 21 e 8 f o r T a y l o r s s e r i e s e x p a n s i o n a t x = 0 , f ( x ) = f ( 0 ) + f ( 0 ) 1 ! + f ( 0 ) 2 ! + f ( 0 ) 3 ! + . . . y = ( 1 + x ) 1 / x = e e x 2 + 11 e x 2 24 7 e x 3 16 + . . . f\left( x \right) =y={ \left( 1+x \right) }^{ 1/x }\Rightarrow \underset { x\rightarrow 0 }{ lim } { y }=e\\ \\ \ln { y } =\cfrac { \ln { \left( 1+x \right) } }{ x } =1-\cfrac { x }{ 2 } +\cfrac { { x }^{ 2 } }{ 3 } -\cfrac { { x }^{ 3 } }{ 4 } +\cfrac { { x }^{ 4 } }{ 5 } -...\\ \\ \Rightarrow { y }_{ 1 }=y\left( \cfrac { -1 }{ 2 } +\cfrac { 2x }{ 3 } -\cfrac { 3{ x }^{ 2 } }{ 4 } +\cfrac { 4{ x }^{ 3 } }{ 5 } -... \right) \\ \\ \Rightarrow \underset { x\rightarrow 0 }{ lim } { y }_{ 1 }=\underset { x\rightarrow 0 }{ lim } { y }\left( \cfrac { -1 }{ 2 } +\cfrac { 2x }{ 3 } -\cfrac { 3{ x }^{ 2 } }{ 4 } +\cfrac { 4{ x }^{ 3 } }{ 5 } -... \right) =\cfrac { -e }{ 2 } \\ \\ \\ Now,{ y }_{ 2 }={ y }_{ 1 }\left( \cfrac { -1 }{ 2 } +\cfrac { 2x }{ 3 } -\cfrac { 3{ x }^{ 2 } }{ 4 } +\cfrac { 4{ x }^{ 3 } }{ 5 } -... \right) \\ \\ +y\left( \cfrac { 2 }{ 3 } -\cfrac { 6x }{ 4 } +\cfrac { 12{ x }^{ 2 } }{ 5 } -... \right) \\ \\ \Rightarrow \underset { x\rightarrow 0 }{ lim } { y }_{ 2 }=\underset { x\rightarrow 0 }{ lim } { y }_{ 1 }\left( \cfrac { -1 }{ 2 } +\cfrac { 2x }{ 3 } -\cfrac { 3{ x }^{ 2 } }{ 4 } +\cfrac { 4{ x }^{ 3 } }{ 5 } -... \right) \\ \\ +\underset { x\rightarrow 0 }{ lim } y\left( \cfrac { 2 }{ 3 } -\cfrac { 6x }{ 4 } +\cfrac { 12{ x }^{ 2 } }{ 5 } -... \right) \\ \\ =\left( \cfrac { -e }{ 2 } \right) \left( \cfrac { -1 }{ 2 } \right) +e\left( \cfrac { 2 }{ 3 } \right) =\cfrac { 11e }{ 12 } \\ \\ \\ \& \quad { y }_{ 3 }={ y }_{ 2 }\left( \cfrac { -1 }{ 2 } +\cfrac { 2x }{ 3 } -\cfrac { 3{ x }^{ 2 } }{ 4 } +\cfrac { 4{ x }^{ 3 } }{ 5 } -... \right) \\ \\ +{ y }_{ 1 }\left( \cfrac { 2 }{ 3 } -\cfrac { 6x }{ 4 } +\cfrac { 12{ x }^{ 2 } }{ 5 } -... \right) \\ \\ \quad +{ y }_{ 1 }\left( \cfrac { 2 }{ 3 } -\cfrac { 6x }{ 4 } +\cfrac { 12{ x }^{ 2 } }{ 5 } -... \right) +y\left( \cfrac { -6 }{ 4 } +\cfrac { 24x }{ 5 } -... \right) \\ \\ ={ y }_{ 2 }\left( \cfrac { -1 }{ 2 } +\cfrac { 2x }{ 3 } -\cfrac { 3{ x }^{ 2 } }{ 4 } +\cfrac { 4{ x }^{ 3 } }{ 5 } -... \right) \\ \\ +{ 2y }_{ 1 }\left( \cfrac { 2 }{ 3 } -\cfrac { 6x }{ 4 } +\cfrac { 12{ x }^{ 2 } }{ 5 } -... \right) +y\left( \cfrac { -6 }{ 4 } +\cfrac { 24x }{ 5 } -... \right) \\ \\ \\ \Rightarrow \underset { x\rightarrow 0 }{ lim } { y }_{ 3 }=\underset { x\rightarrow 0 }{ lim } { y }_{ 2 }\left( \cfrac { -1 }{ 2 } +\cfrac { 2x }{ 3 } -\cfrac { 3{ x }^{ 2 } }{ 4 } +\cfrac { 4{ x }^{ 3 } }{ 5 } -... \right) \\ \\ +\underset { x\rightarrow 0 }{ lim } 2{ y }_{ 1 }\left( \cfrac { 2 }{ 3 } -\cfrac { 6x }{ 4 } +\cfrac { 12{ x }^{ 2 } }{ 5 } -... \right) +\underset { x\rightarrow 0 }{ lim } y\left( \cfrac { -6 }{ 4 } +\cfrac { 24x }{ 5 } -... \right) \\ \\ =\left( \cfrac { 11e }{ 12 } \right) \left( \cfrac { -1 }{ 2 } \right) +2\left( \cfrac { -e }{ 2 } \right) \left( \cfrac { 2 }{ 3 } \right) +e\left( \cfrac { -6 }{ 4 } \right) =\cfrac { -21e }{ 8 } \\ \\ or\quad \underset { x\rightarrow 0 }{ lim } { f\left( x \right) }=e,\underset { x\rightarrow 0 }{ lim } { f^{ ' }\left( x \right) }=\cfrac { -e }{ 2 } ,\underset { x\rightarrow 0 }{ lim } { f^{ '' }\left( x \right) }=\cfrac { 11e }{ 12 } \\ \\ \& \underset { x\rightarrow 0 }{ lim } { f^{ ''' }\left( x \right) }=\cfrac { -21e }{ 8 } \\ \\ \\ for\quad Taylor's\quad series\quad expansion\quad at\quad x=0,\\ \\ f\left( x \right) =f\left( 0 \right) +\cfrac { { f^{ ' }\left( 0 \right) } }{ 1! } +\cfrac { { f^{ '' }\left( 0 \right) } }{ 2! } +\cfrac { { f^{ ''' }\left( 0 \right) } }{ 3! } +...\\ \\ \Rightarrow y={ \left( 1+x \right) }^{ 1/x }=e-\cfrac { ex }{ 2 } +\cfrac { 11e{ x }^{ 2 } }{ 24 } -\cfrac { 7e{ x }^{ 3 } }{ 16 } +...

Moderator note:

Great! You just need to find the first derivative of ( 1 + x ) 1 x (1+x)^{\frac 1x} . Because by L'Hopital rule, the limit becomes d d x [ ( 1 + x ) 1 x ] x = 0 - \frac {d}{dx} \left [ (1 + x)^{\frac 1x} \right ]_{x=0} .

Hi .. Ayush ! How was your Mains , I mean how much you are getting ? I see You are Using Brillinat after long time ...

And I also use Expansion ... But I did not know proof of this expansion .. I just remembered it ... But Can You Please Tell what it's proof ...?

@Ayush Verma

Karan Shekhawat - 6 years, 1 month ago

Log in to reply

Use Taylor's series expansion at x=0.

and i have passed 12th in 2011

Ayush Verma - 6 years, 1 month ago

Log in to reply

oopes sorry .. I was asuumed from very begening that you are also perapring for Jee and all that stuff... Sorry ! Anyway where do you study ... what branch ? I know that You have really cool problem solving skills ..!

Karan Shekhawat - 6 years, 1 month ago

Log in to reply

@Karan Shekhawat Now i have added the proof and i am in ISM Dhanbad.

Ayush Verma - 6 years, 1 month ago

Nice solution #ayush

harsh soni - 6 years, 1 month ago
Abhishek Sharma
Apr 23, 2015

lim x 0 e ( 1 + x ) 1 x tan x \large \lim _{ x\to 0 } \frac { e-(1+x)^{ \frac { 1 }{ x } } }{ \tan x } lim x 0 e e ln ( 1 + x ) x tan x \large \lim _{ x\to 0 } \frac { e-{ e }^{ \frac { \ln { (1+x) } }{ x } } }{ \tan x } lim x 0 e ( e ln ( 1 + x ) x 1 1 ) tan x \large \lim _{ x\to 0 } \frac { -e({ e }^{ \frac { \ln { (1+x) } }{ x } -1 }-1) }{ \tan x } lim x 0 e ( e ln ( 1 + x ) x 1 1 ) ( ln ( 1 + x ) x 1 ) x tan x ( ln ( 1 + x ) x 1 ) x \large\lim _{ x\to 0 } \frac { -e({ e }^{ \frac { \ln { (1+x) } }{ x } -1 }-1)(\frac { \ln { (1+x) } }{ x } -1)x }{ \tan x(\frac { \ln { (1+x) } }{ x } -1)x } ( lim x 0 e ) ( lim x 0 ( e ln ( 1 + x ) x 1 1 ) ( ln ( 1 + x ) x 1 ) ) ( lim x 0 x tan x ) ( lim x 0 ln ( 1 + x ) x x 2 ) (\lim _{ x\to 0 } -e)(\lim _{ x\to 0 } \frac { ({ e }^{ \frac { \ln { (1+x) } }{ x } -1 }-1) }{ (\frac { \ln { (1+x) } }{ x } -1) } )(\lim _{ x\to 0 } \frac { x }{ \tan x } )(\lim _{ x\to 0 } \frac { \ln { (1+x) } -{ x } }{ { x }^{ 2 } } ) ( e ) ( lim x 0 ln ( 1 + x ) x x 2 ) \large(-e)(\lim _{ x\to 0 } \frac { \ln { (1+x) } -{ x } }{ { x }^{ 2 } } ) ( e ) ( lim x 0 x 2 2 + x 3 3 x 4 4 + x 2 ) \large(-e)(\lim _{ x\to 0 } \frac { -\frac { { x }^{ 2 } }{ 2 } +\frac { { x }^{ 3 } }{ 3 } -\frac { { x }^{ 4 } }{ 4 } +\dots }{ { x }^{ 2 } } ) ( e ) ( lim x 0 1 2 + x 3 x 2 4 + ) \large(-e)(\lim _{ x\to 0 } \frac { -1 }{ 2 } +\frac { x }{ 3 } -\frac { { x }^{ 2 } }{ 4 } +\dots ) e 2 \large\boxed { \frac { e }{ 2 } }

Well you had to use the expansion at last . ;) Btw nice solution.

Keshav Tiwari - 6 years, 1 month ago

Log in to reply

I could've avoided it by using LH Rule, however the utility of expansion can't be questioned.

Abhishek Sharma - 6 years, 1 month ago

@Keshav Tiwari Could you please post a solution to Chemistry and Calculus ? Many thanks!

User 123 - 6 years, 1 month ago

Log in to reply

@Ishan Dasgupta Samarendra Done!

Keshav Tiwari - 6 years, 1 month ago

Log in to reply

@Keshav Tiwari @Keshav Tiwari Ah, both of us have solved it the same way! Really loved the question!

User 123 - 6 years, 1 month ago

Nice solution.

Ayush Verma - 6 years, 1 month ago

uffff i had an orgasm with your solution

Héctor Andrés Parra Vega - 6 years, 1 month ago
Danish Mohammed
Apr 24, 2015

First let's get rid of that tan ( x ) \tan(x)

L = lim x 0 e ( 1 + x ) 1 / x x tan x x = lim x 0 e ( 1 + x ) 1 / x x \displaystyle L= \lim_{x \rightarrow 0} \frac{\frac{e-(1+x)^{1/x}}{x}}{\frac{\tan x}{x}}=\lim_{x \rightarrow 0} \frac{e-(1+x)^{1/x}}{x}

Method 1 (L'hopital's rule)

The function is in 0 0 \frac{0}{0} form. So we can use l'Hopital's rule. Find the derivative of ( 1 + x ) 1 / x (1+x)^{1/x} using logarithmic differentiation.

d d x ( 1 + x ) 1 / x = ( 1 + x ) 1 / x ( x ( 1 + x ) ln ( 1 + x ) x 2 ( 1 + x ) ) \displaystyle \frac{\mathrm{d}}{\mathrm{d}x} (1+x)^{1/x} = (1+x)^{1/x}(\frac{x-(1+x)\ln(1+x)}{x^2(1+x)})

and d d x x = 1 \displaystyle \frac{\mathrm{d}}{\mathrm{d}x} x = 1

Therefore, from l'Hopital's rule

L = lim x 0 ( 1 + x ) 1 / x ( x ( 1 + x ) ln ( 1 + x ) x 2 ( 1 + x ) ) = e lim x 0 x ( 1 + x ) ln ( 1 + x ) x 2 ( 1 + x ) \displaystyle L=\lim_{x \rightarrow 0} -(1+x)^{1/x}(\frac{x-(1+x)\ln(1+x)}{x^2(1+x)}) = -e \lim_{x \rightarrow 0} \frac{x-(1+x)\ln(1+x)}{x^2(1+x)}

Use l'Hopital's rule again (because 0/0 form)

L = e lim x 0 ln ( 1 + x ) 2 x ( 1 + x ) + x 2 = e ( 1 2 ) = e 2 \displaystyle L=-e \lim_{x \rightarrow 0} \frac{-\ln(1+x)}{2x(1+x) + x^2} = -e (\frac{-1}{2}) = \boxed{\frac{e}{2}}

Method 2 (Maclaurin Series)

You may remember for x 0 x \rightarrow 0

( 1 + x ) 1 / x = e e x 2 + 11 e x 2 24 O ( x 3 ) \displaystyle (1+x)^{1/x} = e - \frac{ex}{2} + \frac{11ex^2}{24} - O(x^3)

e ( 1 + x ) 1 / x = e x 2 11 e x 2 24 + O ( x 3 ) \displaystyle e - (1+x)^{1/x} = \frac{ex}{2} - \frac{11ex^2}{24} +O(x^3)

e ( 1 + x ) 1 / x x = e 2 11 e x 24 + O ( x 2 ) \displaystyle \frac{e - (1+x)^{1/x}}{x} = \frac{e}{2} - \frac{11ex}{24} +O(x^2)

And finally lim x 0 e ( 1 + x ) 1 / x x = e 2 \displaystyle \lim_{x \rightarrow 0} \frac{e - (1+x)^{1/x}}{x} = \boxed{\frac{e}{2}}

If you don't remember the maclaurin series, it's usually better to use l'Hopital's rule since you'd have to find the derivatives anyway. But if you insist you can still find the first two terms of the maclaurin series (that's all we need to solve the problem) without the derivatives in the following manner.

In a sufficiently small neighbourhood of 0 (since x 0 x \rightarrow 0 ), we can use the binomial expansion

( 1 + x ) 1 / x = 1 + 1 1 ! + 1 ( 1 x ) 2 ! + 1 ( 1 x ) ( 1 2 x ) 3 ! + 1 ( 1 x ) ( 1 2 x ) ( 1 3 x ) 4 ! + \displaystyle (1+x)^{1/x} = 1+\frac{1}{1!} + \frac{1(1-x)}{2!} + \frac{1(1-x)(1-2x)}{3!} + \frac{1(1-x)(1-2x)(1-3x)}{4!} +\dots

= ( 1 + 1 1 ! + 1 2 ! + 1 3 ! + ) ( 1 2 ! + 1 3 ! + 2 3 ! + 1 4 ! + 2 4 ! + 3 4 ! + 1 5 ! + ) x + O ( x 2 ) \displaystyle =(1+\frac{1}{1!} +\frac{1}{2!}+\frac{1}{3!} +\dots)-(\frac{1}{2!}+\frac{1}{3!}+\frac{2}{3!}+\frac{1}{4!}+\frac{2}{4!}+\frac{3}{4!}+\frac{1}{5!}+\dots)x +O(x^2)

= e ( r = 2 k = 1 r 1 k r ! ) x + O ( x 2 ) \displaystyle = e - (\sum_{r=2}^{\infty} \frac{\sum_{k=1}^{r-1} k}{r!})x +O(x^2)

= e ( r = 2 ( r 1 ) ( r ) 2 ( r ! ) ) x + O ( x 2 ) \displaystyle = e - (\sum_{r=2}^{\infty} \frac{(r-1)(r)}{2(r!)})x + O(x^2)

= e ( 1 2 r = 2 1 ( r 2 ) ! ) x + O ( x 2 ) \displaystyle = e - (\frac{1}{2} \sum_{r=2}^{\infty} \frac{1}{(r-2)!})x + O(x^2)

= e e x 2 + O ( x 2 ) \displaystyle = e -\frac{ex}{2} +O(x^2)

And you can solve the problem as shown above.

Naren Bhandari
May 23, 2018

L = lim x 0 e ( 1 + x ) 1 x tan x L = lim x 0 e ( e e x 2 + 11 e x 2 12 + O ( x 3 ) ) x + x 3 3 + 2 x 5 5 + L = lim x 0 x e ( 1 2 11 x 12 + O ( x 3 ) ) x ( 1 + x 2 3 + 2 x 4 5 + ) L = e 2 = 1 2 × e 1 L =\lim_{x\to 0} \dfrac{e - \,(1+x)^{\frac{1}{x}}}{\tan x} \\ L = \lim_{x\to 0} \dfrac{e -\left(e -\dfrac{ex}{2} +\dfrac{11ex^2}{12}+O(x^3)\right) }{ x +\dfrac{x^3}{3} +\dfrac{2x^5}{5}+\cdots } \\ L = \lim_{x\to 0} \dfrac{xe\left(\dfrac{1}{2} -\dfrac{11x}{12}+O(x^3)\right) }{ x\left(1 +\dfrac{x^2}{3} +\dfrac{2x^4}{5}+\cdots \right)} \\ L = \dfrac{e}{2} = \frac{1}{2}\times e^1 Hence A + B = 1 + 1 2 = 3 2 = 1.5 A+B = 1+\frac{1}{2}= \frac{3}{2}=\boxed{1.5}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...