I learnt something new today!

Calculus Level 4

0 4 x 3 16 x 2 d x \large \displaystyle \int^{4}_{0}\dfrac{x^3}{\sqrt{16-x^2}} \, dx

If the value of above expression is in the form a b \dfrac{a}{b} where a a and b b are coprime positive integers, find a + b a+b .


The answer is 131.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Rishabh Jain
Feb 24, 2016

Thanks for improving my trigono skills. :-} Substitute x = 4 sin θ x=4\sin \theta such that d x = 4 cos θ d θ \, dx=4\cos \theta \, d\theta . K = 0 π 2 64 sin 3 θ 16 16 sin 2 θ ( 4 cos θ d θ ) \large \mathfrak{K}=\displaystyle \int_0^{\frac{\pi}{2}} \dfrac{64\sin^3 \theta}{\sqrt{16-16\sin^2 \theta}} (4\cos \theta \, d\theta) = 64 0 π 2 sin 3 θ d θ ( 1 sin 2 θ = cos 2 θ ) \large =64 \displaystyle \int_0^{\frac{\pi}{2}} \sin^3 \theta \, d\theta~~\color{#D61F06}{\small{(\because 1-\sin^2 \theta =\cos^2 \theta)}} Now using sin 3 A = 3 sin A 4 sin 3 A \color{#D61F06}{\sin 3A=3\sin A-4\sin^3 A} sin 3 A = 3 sin A sin 3 A 4 \color{#D61F06}{\implies \sin^3 A=\dfrac{3\sin A-\sin 3A}{4}} . K = 16 0 π 2 ( 3 sin θ sin 3 θ ) d θ \large \mathfrak{K}=16\int_0^{\small{\frac{\pi}{2}}} (3\sin \theta-\sin 3\theta)\, d\theta = 16 ( 3 cos θ + cos 3 θ 3 ) 0 π 2 \large =16(-3\cos \theta +\dfrac{\cos 3\theta}{3})|_0^{\frac{\pi}{2}} = 128 3 \huge =\dfrac{128}{3} 128 + 3 = 131 \huge \therefore ~128+3=\huge\color{#456461}{\boxed{\color{#D61F06}{\boxed{\color{#007fff}{131}}}}}

How π / 2 \pi/2 instead of 4 on the integral ?

Akshat Sharda - 5 years, 3 months ago

Log in to reply

x = 4 sin θ x=4\sin\theta That means for the upper limit : 4 = 4 sin θ sin θ = 1 θ = π 2 4=4\sin \theta \implies \sin \theta=1\implies \theta =\frac{\pi}{2}

Rishabh Jain - 5 years, 3 months ago

Log in to reply

Wow !!!!!!!!! Soo cool.

Akshat Sharda - 5 years, 3 months ago

Log in to reply

@Akshat Sharda Yeah!!.. :-} T H A N K S \huge \color{#302B94}{\mathbb{THANKS}} BTW I have learnt using mathbb tag from a solution of your's only ;-)

Rishabh Jain - 5 years, 3 months ago

Log in to reply

@Rishabh Jain Even I learnt it from someone else's solution !! :P

Akshat Sharda - 5 years, 3 months ago

Log in to reply

@Akshat Sharda Yeah... 'Toggle Latex is cool... I have learnt latex completely using this feature.. ;-)

Rishabh Jain - 5 years, 3 months ago

Can you find an expression in which you can plug in 0 and 4 and find its value , i.e., no trigonometry ?

Akshat Sharda - 5 years, 3 months ago

Log in to reply

For a solution without trigo, how about the substitution t = x 2 t=x^2 ?

The integral then simplifies to

1 2 0 16 t 16 t d t \displaystyle \frac{1}{2} \displaystyle \int_{0}^{16} \frac{t} {\sqrt{16-t}} dt

1 2 0 16 ( 16 16 t 16 t ) d t \displaystyle \Rightarrow \displaystyle \frac{1}{2} \int_{0}^{16} \bigg(\frac{16}{\sqrt{16-t}} - \sqrt{16-t}\bigg) dt

( 16 ( 16 t ) + 1 3 ( 16 t ) 3 2 ) 0 16 \displaystyle \Rightarrow \bigg( - 16 (\sqrt{16-t}) + \frac{1}{3} (16-t)^{\frac{3}{2}} \bigg)_{0}^{16}

Substituting the limits,

16 ( 4 ) 1 3 ( 4 ) 3 = 128 3 \displaystyle \Rightarrow 16(4) - \frac{1}{3} (4)^{3} =\boxed{ \frac{128}{3}}

Harsh Khatri - 5 years, 3 months ago

Log in to reply

Nicely done !!!

Akshat Sharda - 5 years, 3 months ago

Log in to reply

@Akshat Sharda Thank you!

Harsh Khatri - 5 years, 3 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...