I love being inspired! 5

Algebra Level 4

S = 1 × 2 2 10 + 2 × 3 2 1 0 2 + 3 × 4 2 1 0 3 + 4 × 5 2 1 0 4 + S=\dfrac{1×2^2}{10}+\dfrac{2×3^2}{10^2}+\dfrac{3×4^2}{10^3}+\dfrac{4×5^2}{10^4}+\cdots

If S S is in the form A B \dfrac{A}{B} , where A A and B B are coprime positive integers, find the value of A + B A+B .


The answer is 3587.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

First note that S 10 = n = 2 ( n 1 ) × n 2 1 0 n < n = 2 n 3 1 0 n \dfrac{S}{10} = \displaystyle\sum_{n=2}^{\infty} \dfrac{(n - 1) \times n^{2}}{10^{n}} \lt \sum_{n=2}^{\infty} \dfrac{n^{3}}{10^{n}} , a series which converges by the ratio test , implying that S S must converge as well. We are thus free to rearrange the terms of S S without changing its value.

We can then state that

S 10 = n = 2 n 3 1 0 n n = 2 n 2 1 0 n = ( n = 1 n 3 1 0 n 1 10 ) ( n = 1 n 2 1 0 n 1 10 ) = n = 1 n 3 1 0 n n = 1 n 2 1 0 n . \dfrac{S}{10} = \displaystyle\sum_{n=2}^{\infty} \dfrac{n^{3}}{10^{n}} - \sum_{n=2}^{\infty} \dfrac{n^{2}}{10^{n}} = \left(\sum_{n=1}^{\infty} \dfrac{n^{3}}{10^{n}} - \dfrac{1}{10}\right) - \left( \sum_{n=1}^{\infty} \dfrac{n^{2}}{10^{n}} - \dfrac{1}{10}\right) = \sum_{n=1}^{\infty} \dfrac{n^{3}}{10^{n}} - \sum_{n=1}^{\infty} \dfrac{n^{2}}{10^{n}}.

Next, we will make use of the fact that n = 0 x n = 1 1 x \displaystyle\sum_{n=0}^{\infty} x^{n} = \dfrac{1}{1 - x} for x < 1. |x| \lt 1.

Differentiating this equation, (the LHS term-by-term), we find that

n = 1 n x n 1 = 1 ( 1 x ) 2 n = 1 n x n = x ( 1 x ) 2 . \displaystyle\sum_{n=1}^{\infty} nx^{n-1} = \dfrac{1}{(1 - x)^{2}} \Longrightarrow \sum_{n=1}^{\infty} nx^{n} = \dfrac{x}{(1 - x)^{2}}.

Differentiating this last equation, (the LHS again term-by-term), we find that

n = 1 n 2 x n 1 = 1 + x ( 1 x ) 3 n = 1 n 2 x n = x 2 + x ( 1 x ) 3 , \displaystyle\sum_{n=1}^{\infty} n^{2} x^{n-1} = \dfrac{1 + x}{(1 - x)^{3}} \Longrightarrow \sum_{n=1}^{\infty} n^{2}x^{n} = \dfrac{x^{2} + x}{(1 - x)^{3}}, (equation I).

Differentiating one last time, we find that

n = 1 n 3 x n 1 = x 2 + 4 x + 1 ( 1 x ) 4 n = 1 n 3 x n = x 3 + 4 x 2 + x ( 1 x ) 4 \displaystyle\sum_{n=1}^{\infty} n^{3}x^{n-1} = \dfrac{x^{2} + 4x + 1}{(1 - x)^{4}} \Longrightarrow \sum_{n=1}^{\infty} n^{3}x^{n} = \dfrac{x^{3} + 4x^{2} + x}{(1 - x)^{4}} , (equation II).

So by plugging in x = 1 10 x = \dfrac{1}{10} into equations I and II, we see that

S 10 = 1 1000 + 4 100 + 1 10 ( 1 1 10 ) 4 1 100 + 1 10 ( 1 1 10 ) 3 = 1 0 4 9 4 141 1 0 3 1 0 3 9 3 11 100 = 1410 9 4 110 9 3 = 420 6561 = 140 2187 . \dfrac{S}{10} = \dfrac{\frac{1}{1000} + \frac{4}{100} + \frac{1}{10}}{(1 - \frac{1}{10})^{4}} - \dfrac{\frac{1}{100} + \frac{1}{10}}{(1 - \frac{1}{10})^{3}} = \dfrac{10^{4}}{9^{4}}*\dfrac{141}{10^{3}} - \dfrac{10^{3}}{9^{3}}*\dfrac{11}{100} = \dfrac{1410}{9^{4}} - \dfrac{110}{9^{3}} = \dfrac{420}{6561} = \dfrac{140}{2187}.

Thus S = 1400 2187 S = \dfrac{1400}{2187} , and so A + B = 1400 + 2187 = 3587 . A + B = 1400 + 2187 = \boxed{3587}.

Shaun Leong
Dec 19, 2015

A purely algebraic method: S = n = 1 n ( n + 1 ) 2 1 0 n S = \displaystyle \sum_{n=1}^\infty \frac {n(n+1)^2}{10^n} Note that ( n + 1 ) ( n + 2 ) 2 1 0 n + 1 n ( n + 1 ) 2 1 0 n + 1 = ( n + 1 ) ( 3 n + 4 ) 1 0 n + 1 \frac {(n+1)(n+2)^2}{10^{n+1}} - \frac {n(n+1)^2}{10^{n+1}} = \frac {(n+1)(3n+4)}{10^{n+1}} We subtract 1 10 S \frac {1}{10}S from S S to get S 1 10 S = 2 5 + n = 1 ( n + 1 ) ( 3 n + 4 ) 1 0 n + 1 S- \frac {1}{10}S = \frac {2}{5} + \displaystyle \sum_{n=1}^\infty \frac {(n+1)(3n+4)}{10^{n+1}} Let x = n = 1 ( n + 1 ) ( 3 n + 4 ) 1 0 n + 1 x = \displaystyle \sum_{n=1}^\infty \frac {(n+1)(3n+4)}{10^{n+1}} . Using the same method and infinite G.P. formula, x 1 10 x = 7 50 + n = 1 6 n + 10 1 0 n + 2 = 7 50 + n = 1 10 1 0 n + 2 + n = 1 6 n 1 0 n + 2 9 10 x = 7 50 + 1 90 + n = 1 6 n 1 0 n + 2 x- \frac {1}{10}x = \frac {7}{50} + \displaystyle \sum_{n=1}^\infty \frac {6n+10}{10^{n+2}} = \frac {7}{50} + \displaystyle \sum_{n=1}^\infty \frac {10}{10^{n+2}} + \displaystyle \sum_{n=1}^\infty \frac {6n}{10^{n+2}} \Rightarrow \frac {9}{10}x = \frac {7}{50} + \frac {1}{90} + \displaystyle \sum_{n=1}^\infty \frac {6n}{10^{n+2}} Let y = n = 1 6 n 1 0 n + 2 y = \displaystyle \sum_{n=1}^\infty \frac {6n}{10^{n+2}} Using the method a third and final time together with the G.P. formula, y 1 10 y = 6 1 0 3 + 6 1 0 4 + 6 1 0 5 + = 6 900 = 1 150 y - \frac {1}{10}y = \frac {6}{10^3} + \frac {6}{10^4} + \frac {6}{10^5} + \ldots = \frac {6}{900} = \frac {1}{150} Now we can solve for S from the 3 equations 9 10 S = 2 5 + x \frac {9}{10} S = \frac {2}{5} + x , 9 10 x = 7 50 + 1 90 + y \frac {9}{10} x = \frac {7}{50} + \frac {1}{90} + y and 9 10 y = 1 150 \frac {9}{10}y = \frac {1}{150} to get S = 1400 2187 S = \frac {1400}{2187} . The required answer is then 1400 + 2187 = 3587 1400+2187 = \boxed {3587}

Isaac Buckley
Dec 19, 2015

S = n = 1 n ( n + 1 ) 2 1 0 n = n = 1 n 3 + 2 n 2 + n 1 0 n = n = 1 n 3 1 0 n + 2 n = 1 n 2 1 0 n + n = 1 n 1 0 n S=\sum_{n=1}^{\infty} \frac{n(n+1)^2}{10^n}=\sum_{n=1}^{\infty} \frac{n^3+2n^2+n}{10^n}=\sum_{n=1}^{\infty} \frac{n^3}{10^n}+2\sum_{n=1}^{\infty} \frac{n^2}{10^n}+\sum_{n=1}^{\infty} \frac{n}{10^n}

Using the known expressions of the polylogarithm we find: S = L i 3 ( 1 10 ) + 2 L i 2 ( 1 10 ) + L i 1 ( 1 10 ) = 1400 2187 S=Li_{-3}\left(\frac{1}{10}\right)+2Li_{-2}\left(\frac{1}{10}\right)+Li_{-1}\left(\frac{1}{10}\right)=\frac{1400}{2187}

Huh, I didn't know that these sums had a name attached to them. Thanks for mentioning that. :)

Brian Charlesworth - 5 years, 5 months ago

Log in to reply

yeah i only knew simple logarithms before this solution ! thanks for mentioning :)

Prakhar Bindal - 5 years, 5 months ago

Log in to reply

No problem.

Also note my solution assumes convergence, look at Brian's solution for both proof of convergence and proof of the polylogarith expressions I used.

Isaac Buckley - 5 years, 5 months ago

Log in to reply

@Isaac Buckley Once again thanks for mentioning! . well i will like to explore this polylogarithm more !

Prakhar Bindal - 5 years, 5 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...