I love cos 2

Geometry Level 3

cos 8 ( π 8 ) + cos 8 ( 3 π 8 ) + cos 8 ( 5 π 8 ) + cos 8 ( 7 π 8 ) \large\cos ^{8}\left( \frac{\pi }{8} \right) + \cos \nolimits^{8}\left( \frac{3\pi }{8} \right) + \cos \nolimits^{8}\left( \frac{5\pi }{8} \right) + \cos \nolimits^{8}\left( \frac{7\pi }{8} \right)

If the value of the expression above equals to A B \dfrac AB for coprime positive integers, find the value of A B A - B .


The answer is 1.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Sep 17, 2015

Let the expression be S S , then we have:

S = cos 8 ( π 8 ) + cos 8 ( 3 π 8 ) + cos 8 ( 5 π 8 ) + cos 8 ( 7 π 8 ) = cos 8 ( π 8 ) + cos 8 ( 3 π 8 ) + [ cos ( 3 π 8 ) ] 8 + [ cos ( π 8 ) ] 8 = 2 [ cos 8 ( π 8 ) + cos 8 ( 3 π 8 ) ] = 2 [ ( cos 2 ( π 8 ) ) 4 + ( cos 2 ( 3 π 8 ) ) 4 ] = 2 [ 1 2 4 ( 1 + cos ( π 4 ) ) 4 + 1 2 4 ( 1 + cos ( 3 π 4 ) ) 4 ] = 2 [ 1 2 4 ( 1 + 1 2 ) 4 + 1 2 4 ( 1 1 2 ) 4 ] = 1 2 5 [ ( 2 + 1 ) 4 + ( 2 1 ) 4 ] = 2 2 5 [ ( 2 ) 4 + 6 ( 2 ) 2 + 1 ] = 1 2 4 [ 4 + 12 + 1 ] = 17 16 \begin{aligned} S & = \cos^8 \left( \frac{\pi}{8} \right) + \cos^8 \left( \frac{3\pi}{8} \right) + \color{#3D99F6}{\cos^8 \left( \frac{5\pi}{8} \right)} + \color{#D61F06}{\cos^8 \left( \frac{7\pi}{8} \right)} \\ & = \cos^8 \left( \frac{\pi}{8} \right) + \cos^8 \left( \frac{3\pi}{8} \right) + \color{#3D99F6}{\left[- \cos \left( \frac{3\pi}{8} \right) \right]^8} + \color{#D61F06}{\left[- \cos \left( \frac{\pi}{8} \right) \right]^8} \\ & = 2 \left[ \cos^8 \left( \frac{\pi}{8} \right) + \cos^8 \left( \frac{3\pi}{8} \right) \right] \\ & = 2 \left[ \left( \cos^2 \left( \frac{\pi}{8} \right) \right)^4 + \left( \cos^2 \left( \frac{3\pi}{8} \right) \right)^4 \right] \\ & = 2 \left[ \frac{1}{2^4}\left( 1+ \cos \left(\frac{\pi}{4} \right) \right)^4 + \frac{1}{2^4}\left( 1+ \cos \left(\frac{3\pi}{4} \right) \right)^4 \right] \\ & = 2 \left[ \frac{1}{2^4}\left(1 + \frac{1}{\sqrt{2}} \right)^4 + \frac{1}{2^4}\left(1 - \frac{1}{\sqrt{2}} \right)^4 \right] \\ & = \frac{1}{2^5} \left[\left(\sqrt{2} + 1\right)^4 + \left(\sqrt{2} - 1\right)^4 \right] \\ & = \frac{2}{2^5} \left[(\sqrt{2})^4 + 6(\sqrt{2})^2 + 1 \right] \\ & = \frac{1}{2^4} \left[4 + 12 + 1 \right] \\ & = \frac{17}{16} \end{aligned}

A B = 17 16 = 1 \Rightarrow A - B = 17 - 16 = \boxed{1}

\color{#3D99F6}{-----------------------------------------}

On bonus problem

S = cos 8 ( π 16 ) + cos 8 ( 3 π 16 ) + cos 8 ( 5 π 16 ) + cos 8 ( 7 π 16 ) = sin 8 ( 3 π 16 ) + cos 8 ( π 16 ) + sin 8 ( π 16 ) + cos 8 ( 3 π 16 ) = [ sin 2 ( π 16 ) ] 4 + [ cos 2 ( π 16 ) ] 4 + [ sin 2 ( 3 π 16 ) ] 4 + [ cos 2 ( 3 π 16 ) ] 4 = 1 2 4 ( [ 1 cos ( π 8 ) ] 4 + [ 1 + cos ( π 8 ) ] 4 + [ 1 cos ( 3 π 8 ) ] 4 + [ 1 + cos ( 3 π 8 ) ] 4 ) = 1 2 3 ( 1 + 6 cos 2 ( π 8 ) + cos 4 ( π 8 ) + 1 + 6 cos 2 ( 3 π 8 ) + cos 4 ( 3 π 8 ) ) = 1 2 3 ( 2 + 3 [ 1 + cos ( π 4 ) + 1 + cos ( 3 π 4 ) ] + 1 4 [ 1 + cos ( π 4 ) ] 2 + 1 4 [ 1 + cos ( 3 π 4 ) ] 2 ) = 1 2 3 ( 2 + 3 [ 1 + 1 2 + 1 1 2 ] + 1 4 [ 1 + 1 2 ] 2 + 1 4 [ 1 1 2 ] 2 ) = 1 2 3 ( 2 + 6 + 1 2 [ 1 + 1 2 ] ) = 1 8 ( 8 + 3 4 ) = 35 32 \begin{aligned} S & = \cos^8 \left( \frac{\pi}{16} \right) + \cos^8 \left( \frac{3\pi}{16} \right) + \color{#3D99F6}{\cos^8 \left( \frac{5\pi}{16} \right)} + \color{#D61F06}{\cos^8 \left( \frac{7\pi}{16} \right)} \\ & = \color{#3D99F6}{\sin^8 \left( \frac{3\pi}{16} \right)} + \cos^8 \left( \frac{\pi}{16} \right) + \color{#D61F06}{\sin^8 \left( \frac{\pi}{16} \right)} + \cos^8 \left( \frac{3\pi}{16} \right) \\ & = \left[ \sin^2 \left( \frac{\pi}{16} \right)\right]^4 + \left[ \cos^2 \left( \frac{\pi}{16} \right)\right]^4 + \left[ \sin^2 \left( \frac{3\pi}{16} \right)\right]^4 + \left[ \cos^2 \left( \frac{3\pi}{16} \right)\right]^4 \\ & = \frac{1}{2^4} \left( \left[1-\cos \left(\frac{\pi}{8} \right)\right]^4 + \left[1+\cos \left(\frac{\pi}{8} \right)\right]^4 + \left[1-\cos \left(\frac{3\pi}{8} \right)\right]^4 + \left[1+\cos \left(\frac{3\pi}{8} \right)\right]^4 \right) \\ & = \frac{1}{2^3} \left( 1 + 6 \cos^2 \left(\frac{\pi}{8} \right) + \cos^4 \left(\frac{\pi}{8} \right) + 1 + 6 \cos^2 \left(\frac{3\pi}{8} \right) + \cos^4 \left( \frac{3\pi} {8} \right) \right) \\ & = \frac{1}{2^3} \left( 2 + 3 \left[1+\cos \left(\frac{\pi}{4} \right) + 1+\cos \left(\frac{3\pi}{4} \right) \right] + \frac{1}{4} \left[ 1+\cos \left(\frac{\pi}{4} \right) \right]^2 + \frac{1}{4} \left[ 1+\cos \left(\frac{3\pi}{4} \right) \right]^2 \right) \\ & = \frac{1}{2^3} \left( 2 + 3 \left[1+ \frac{1}{\sqrt{2}} + 1 - \frac{1}{\sqrt{2}} \right] + \frac{1}{4} \left[ 1+ \frac{1}{\sqrt{2}} \right]^2 + \frac{1}{4} \left[1 - \frac{1}{\sqrt{2}} \right]^2 \right) \\ & = \frac{1}{2^3} \left(2 + 6 + \frac{1}{2} \left[ 1+ \frac{1}{2} \right] \right) \\ & = \frac{1}{8} \left(8 + \frac{3}{4} \right) \\ & = \boxed{\dfrac{35}{32}} \end{aligned}

Moderator note:

Standard Half angle Approach.

Bonus question : Prove that

cos 8 ( π 16 ) + cos 8 ( 3 π 16 ) + cos 8 ( 5 π 16 ) + cos 8 ( 7 π 16 ) = 35 32 \large\cos ^{8}\left( \frac{\pi }{16} \right) + \cos \nolimits^{8}\left( \frac{3\pi }{16} \right) + \cos \nolimits^{8}\left( \frac{5\pi }{16} \right) + \cos \nolimits^{8}\left( \frac{7\pi }{16} \right) = \frac{35}{32}


EDIT: Wow! Great work!

Nicely done sir . I see you also a cos \cos lover :)

Refaat M. Sayed - 5 years, 9 months ago

Log in to reply

Thanks for the problem.

Chew-Seong Cheong - 5 years, 9 months ago

Log in to reply

Your solutions are very eye - catchy.Your latex skills are damm good.

Akhil Bansal - 5 years, 7 months ago

Log in to reply

@Akhil Bansal Thanks, just doing my best.

Chew-Seong Cheong - 5 years, 7 months ago

Mind Blowing solution _---------- BOOM !

Syed Baqir - 5 years, 8 months ago

At the third last line of your solution should be (sqr root 2)^2 not ^4 thanks

Marvel Wijaya - 5 years, 8 months ago

Log in to reply

Thanks. I have changed it.

Chew-Seong Cheong - 5 years, 8 months ago
Chan Lye Lee
Oct 21, 2015

Let x = sin π 8 x=\sin\frac{\pi}{8} and y = cos π 8 y=\cos\frac{\pi}{8} .

Then x 2 + y 2 = 1 x^2+y^2=1 and 2 x y = sin π 4 = 1 2 2xy=\sin\frac{\pi}{4}=\frac{1}{\sqrt{2}} , which means ( x y ) 2 = 1 8 (xy)^2=\frac{1}{8} .

Now the question is equivalent to finding 2 ( x 8 + y 8 ) 2\left(x^8+y^8\right) .

From x 2 + y 2 = 1 x^2+y^2=1 , we have x 4 + y 4 + 2 ( x y ) 2 = 1 x^4+y^4+2(xy)^2=1 , which means that x 4 + y 4 = 3 4 x^4+y^4=\frac{3}{4} as ( x y ) 2 = 1 8 (xy)^2=\frac{1}{8} . Moving on, x 8 + y 8 + 2 ( x y ) 4 = 9 16 x^8+y^8+2(xy)^4=\frac{9}{16} , which means that x 8 + y 8 = 17 32 x^8+y^8=\frac{17}{32} . Hence 2 ( x 8 + y 8 ) = 17 16 2\left(x^8+y^8\right)=\frac{17}{16} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...