cos 8 ( 8 π ) + cos 8 ( 8 3 π ) + cos 8 ( 8 5 π ) + cos 8 ( 8 7 π )
If the value of the expression above equals to B A for coprime positive integers, find the value of A − B .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Standard Half angle Approach.
Bonus question : Prove that
cos 8 ( 1 6 π ) + cos 8 ( 1 6 3 π ) + cos 8 ( 1 6 5 π ) + cos 8 ( 1 6 7 π ) = 3 2 3 5
EDIT: Wow! Great work!
Nicely done sir . I see you also a cos lover :)
Log in to reply
Thanks for the problem.
Log in to reply
Your solutions are very eye - catchy.Your latex skills are damm good.
Log in to reply
@Akhil Bansal – Thanks, just doing my best.
Mind Blowing solution _---------- BOOM !
At the third last line of your solution should be (sqr root 2)^2 not ^4 thanks
Let x = sin 8 π and y = cos 8 π .
Then x 2 + y 2 = 1 and 2 x y = sin 4 π = 2 1 , which means ( x y ) 2 = 8 1 .
Now the question is equivalent to finding 2 ( x 8 + y 8 ) .
From x 2 + y 2 = 1 , we have x 4 + y 4 + 2 ( x y ) 2 = 1 , which means that x 4 + y 4 = 4 3 as ( x y ) 2 = 8 1 . Moving on, x 8 + y 8 + 2 ( x y ) 4 = 1 6 9 , which means that x 8 + y 8 = 3 2 1 7 . Hence 2 ( x 8 + y 8 ) = 1 6 1 7 .
Problem Loading...
Note Loading...
Set Loading...
Let the expression be S , then we have:
S = cos 8 ( 8 π ) + cos 8 ( 8 3 π ) + cos 8 ( 8 5 π ) + cos 8 ( 8 7 π ) = cos 8 ( 8 π ) + cos 8 ( 8 3 π ) + [ − cos ( 8 3 π ) ] 8 + [ − cos ( 8 π ) ] 8 = 2 [ cos 8 ( 8 π ) + cos 8 ( 8 3 π ) ] = 2 [ ( cos 2 ( 8 π ) ) 4 + ( cos 2 ( 8 3 π ) ) 4 ] = 2 [ 2 4 1 ( 1 + cos ( 4 π ) ) 4 + 2 4 1 ( 1 + cos ( 4 3 π ) ) 4 ] = 2 [ 2 4 1 ( 1 + 2 1 ) 4 + 2 4 1 ( 1 − 2 1 ) 4 ] = 2 5 1 [ ( 2 + 1 ) 4 + ( 2 − 1 ) 4 ] = 2 5 2 [ ( 2 ) 4 + 6 ( 2 ) 2 + 1 ] = 2 4 1 [ 4 + 1 2 + 1 ] = 1 6 1 7
⇒ A − B = 1 7 − 1 6 = 1
− − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − −
On bonus problem
S = cos 8 ( 1 6 π ) + cos 8 ( 1 6 3 π ) + cos 8 ( 1 6 5 π ) + cos 8 ( 1 6 7 π ) = sin 8 ( 1 6 3 π ) + cos 8 ( 1 6 π ) + sin 8 ( 1 6 π ) + cos 8 ( 1 6 3 π ) = [ sin 2 ( 1 6 π ) ] 4 + [ cos 2 ( 1 6 π ) ] 4 + [ sin 2 ( 1 6 3 π ) ] 4 + [ cos 2 ( 1 6 3 π ) ] 4 = 2 4 1 ( [ 1 − cos ( 8 π ) ] 4 + [ 1 + cos ( 8 π ) ] 4 + [ 1 − cos ( 8 3 π ) ] 4 + [ 1 + cos ( 8 3 π ) ] 4 ) = 2 3 1 ( 1 + 6 cos 2 ( 8 π ) + cos 4 ( 8 π ) + 1 + 6 cos 2 ( 8 3 π ) + cos 4 ( 8 3 π ) ) = 2 3 1 ( 2 + 3 [ 1 + cos ( 4 π ) + 1 + cos ( 4 3 π ) ] + 4 1 [ 1 + cos ( 4 π ) ] 2 + 4 1 [ 1 + cos ( 4 3 π ) ] 2 ) = 2 3 1 ( 2 + 3 [ 1 + 2 1 + 1 − 2 1 ] + 4 1 [ 1 + 2 1 ] 2 + 4 1 [ 1 − 2 1 ] 2 ) = 2 3 1 ( 2 + 6 + 2 1 [ 1 + 2 1 ] ) = 8 1 ( 8 + 4 3 ) = 3 2 3 5