If you want a headache

Calculus Level 5

lim n [ n m = 1 n ( 1 1 m + 5 4 m 2 ) ] = ? \large \displaystyle \lim_{n \to \infty} \Bigg[ n \prod_{m=1}^n \bigg( 1-{1\over m} + {5\over 4{m^2}}\bigg)\Bigg] = \ ?


The answer is 3.689.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Refaat M. Sayed
Jun 25, 2015

lim n n m = 1 n ( 1 1 m + 5 4 m 2 ) \displaystyle \lim_{n \to \infty} n \prod_{m=1}^n \Bigg( 1-{1\over m} + {5\over 4{m^2}}\Bigg) lim n 1 n ( ( n 1 ) ! 2 ) k = 1 n [ 1 + ( k 1 2 ) ] \displaystyle \lim_{n\to \infty} {1\over {n{((n-1)!^2)}}} \prod_{k=1}^n \Bigg[ 1+ \Big( k - {1\over 2} \Bigg)\Bigg] lim n 1 n ( ( n 1 ) ! 2 ) k = 1 n ( k 1 2 + i ) k = 1 n ( k 1 2 i ) \displaystyle \lim_{n\to \infty} {1\over {n{((n-1)!^2)}}} \prod_{k=1}^n \Bigg( k-{1\over 2} +i \Bigg) \prod_{k=1}^n \Bigg( k - {1\over2} - i \Bigg) lim n 1 n ( ( n 1 ) ! 2 ) k = 0 n 1 ( k + 1 2 + i ) k = 0 n 1 ( k + 1 2 i ) \displaystyle \lim_{n\to \infty} {1\over {n{((n-1)!^2)}}} \prod_{k=0}^{n-1} \Bigg( k+{1\over 2} +i \Bigg) \prod_{k=0}^{n-1} \Bigg( k + {1\over2} - i \Bigg) z 1 = 1 2 + i z_1 ={1\over 2} + i z 2 = 1 2 i z_2= {1\over 2} -i lim n 1 n ( ( n 1 ) ! 2 ) k = 0 n 1 ( k + z 1 ) k = 0 n 1 ( k + z 2 ) \displaystyle \lim_{n\to \infty} {1\over {n{((n-1)!^2)}}} \prod_{k=0}^{n-1} \Bigg( k+ z_1 \Bigg) \prod_{k=0}^{n-1} \Bigg( k + z_2 \Bigg) lim n ( n 1 ( n 1 ) z 1 ( n 1 ) z 2 ) lim n ( n 1 ) ! ( n 1 ) z 1 k = 0 n 1 ( z 1 + k ) ( n 1 ) ! ( n 1 ) z 2 k = 0 n 1 ( z 2 + k ) \displaystyle \frac {\lim_{n\to \infty} \Bigg( { n^{-1}} {(n-1)^{z_1}} {(n-1)^{z_2}} \Bigg)}{\lim_{n\to \infty}{{ (n-1)! {(n-1)^{z_1}}}\over \prod_{k=0}^{n-1} ({z_1}+ k )} \frac{(n-1)! {(n-1)^{z_2}}}{ \prod_{k=0}^{n-1} ({z_2}+ k )}} 1 Γ 2 i + 1 2 Γ 2 i + 1 2 1\over \Gamma {2i+ 1\over 2} \Gamma { 2i+ 1\over 2} cos ( i π ) π \cos(i\pi)\over \pi c o s h ( π ) π cosh(-\pi)\over \pi = 3.689 ..... i = 1 and Γ is the Gamma function i = \sqrt{-1} \text{ and } \Gamma \text{ is the Gamma function}

And the problem is solved :)

Is there any other basic method.

Atul Solanki - 5 years, 11 months ago

Log in to reply

I will try to find another solution :)

Refaat M. Sayed - 5 years, 11 months ago

Log in to reply

I will be waiting.

Atul Solanki - 5 years, 11 months ago

Can you please explain what you used to skip from the product form to the gamma form?

vishnu c - 5 years, 11 months ago

Log in to reply

By using general form Γ ( x ) = lim n n ! n x 1 x ( x 1 ) ( x 2 ) . . . . . . . . . ( x + n 1 ) \Gamma (x) = \lim_{n\to\infty} \frac{n! n^{x-1}}{x(x-1)(x-2)......... (x+n-1)}

Refaat M. Sayed - 5 years, 11 months ago

Log in to reply

The limit, after simplification is: l i m n n x 1 ( n x + n 1 ) \underset{n\rightarrow \infty}{lim} {\frac {n^{x-1}}{\left(^{x+n-1 }_n\right)}}

Using Stirling's approximation, I evaluated the limit to this point: ( x 1 ) ! × e x 1 × ( n n + x 1 ) n + x 1 2 (x-1)!\times e^{x-1}\times (\frac n {n+x-1} )^{n+x-\frac 1 2 }

What should I do next?

vishnu c - 5 years, 11 months ago

Log in to reply

@Vishnu C Vishnu ! You didn't need to prove this limit. Actually I haven't prove it I use it as a rule to solve the problem

Refaat M. Sayed - 5 years, 11 months ago

Log in to reply

@Refaat M. Sayed I tried to do it for fun, but I got stuck :P

vishnu c - 5 years, 11 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...