Improper Integral: Fourier Transform? Or Complex Numbers?

Calculus Level 4

Find 0 sin ( x 2 ) d x \large \int^{\infty}_0\sin(x^2) \ dx Give your answer to 2 decimal places. (Don't round off) For example: Suppose the answer is 142.326 142.326 . Then type 142.32 142.32 .


The answer is 0.62.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Aditya Agarwal
Jan 4, 2016

We all know that 0 e x 2 d x = π 2 \int^{\infty}_0 e^{-x^2}dx=\frac{\sqrt\pi}{2} (Result of Gaussian Integral, the integrand in it is an even function). Also, 0 e i x 2 d x = e i π 4 2 π \int^\infty_0e^{ix^2}dx=\frac{e^{i\frac\pi4}}{2}\sqrt\pi Which can easily be proved by the previous claim.

Now comes the drum roll! e i x 2 = cos ( x 2 ) + i sin ( x 2 ) e^{ix^2}=\cos(x^2)+i\sin(x^2) By the second claim, we get 0 cos ( x 2 ) d x + i 0 sin ( x 2 ) d x = π 2 ( 1 2 + i 1 2 ) \int^\infty_0\cos(x^2)dx+i\int^\infty_0\sin(x^2)dx=\frac{\sqrt\pi}{2}\left(\frac{1}{\sqrt2}+i\frac1{\sqrt2}\right) Comparing the imaginary parts, we get 0 sin ( x 2 ) d x = π 8 0.62 \int^{\infty}_0\sin(x^2)dx=\sqrt{\frac\pi8}\approx0.62


(This solution is not completely mine, my idea was to use the unnormalized sinc function and take the inverse Fourier Transform, but this also is good)

We know that 0 sin ( x 2 ) d x = 0 cos ( x 2 ) d x \int_0^\infty\sin(x^2)dx=\int_0^\infty\cos(x^2)dx

f ^ ( ξ ) = d x 1 x e 2 π i x ξ = 2 R e 0 d x 1 x e 2 π i x ξ = 1 ξ \hat{f}(\xi)=\int_{-\infty}^\infty dx \frac{1}{\sqrt{|x|}}e^{-2\pi\mathrm{i}x\xi}=2\mathrm{Re}\int_0^\infty dx \frac{1}{\sqrt{x}}e^{-2\pi\mathrm{i}x\xi}=\frac{1}{\sqrt{|\xi|}}\ I = 0 d x cos ( x 2 ) = R e 0 d x e i x 2 = 1 2 R e 0 d y e i y y = 1 4 f ^ ( 1 2 π ) = π 8 . I=\int_0^\infty dx\cos(x^2)=\mathrm{Re}\int_0^\infty dx\ e^{\mathrm{i}x^2}=\frac{1}{2}\mathrm{Re}\int_0^\infty dy\ \frac{e^{\mathrm{i}y}}{\sqrt{y}}=\frac{1}{4}\hat{f}\left(-\frac{1}{2\pi}\right)=\sqrt{\frac{\pi}{8}}\ .


Finally, the \sinc \text{\sinc} function solution!

Fourier Transform of the sinc function is defined as: g ^ ( ξ ) = sin ( x 2 ) x 2 e 2 π i ξ x d x \hat{g}(\xi)=\int_{-\infty}^\infty \frac{\sin(x^2)}{x^2}e^{-2 \pi\mathrm{i}\xi x}dx 2 ξ 2 g ^ ( ξ ) = 4 π 2 d x sin ( x 2 ) e 2 π i ξ x \frac{\partial^2}{\partial\xi^2}\hat{g}(\xi)=-4\pi^2\int_{-\infty}^\infty dx\sin(x^2)e^{-2 \pi\mathrm{i}\xi x} Evaluating at ξ = 0 \xi=0 , 0 d x sin ( x 2 ) = 1 8 π 2 2 ξ 2 g ^ ( ξ ) ξ 0 \int_0^\infty dx\sin(x^2)=-\frac{1}{8\pi^2}\frac{\partial^2}{\partial\xi^2}\hat{g}(\xi)\Big|_{‌​\xi\to 0} Which gives the required answer.

Yep! Fresnel Integral!

Pi Han Goh - 5 years, 5 months ago

Log in to reply

I am waiting for a shorter method. Namely the Fourier Transform. I will post it if no one does that.

Aditya Agarwal - 5 years, 5 months ago

Log in to reply

Please do! There's only a handful of people in Brilliant who know Fourier Transform!

Pi Han Goh - 5 years, 5 months ago

Log in to reply

@Pi Han Goh Done! See above!

Aditya Agarwal - 5 years, 5 months ago

Log in to reply

@Aditya Agarwal HAHAA, no idea what you're talking about. Hey... wanna join a group of people in a discussion forum that talks about integrals/series ?

Pi Han Goh - 5 years, 5 months ago

Log in to reply

@Pi Han Goh Sure, why not?

Aditya Agarwal - 5 years, 5 months ago

Log in to reply

@Aditya Agarwal Go here

Pi Han Goh - 5 years, 5 months ago

I have a question though. When you substitute sqrt(i)x = y for calculating the second result, should the limit be changed such that the infinity be imaginary. Then it is not possible to call it the gaussian integral

prashant pareek - 2 years ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...