Inequality

Algebra Level 3

If a , b , c 0 a,b,c\geq 0 , the maximum value of N N which satisfies the inequality

( a + b ) ( b + c ) ( c + a ) ( a + b + c ) ( a b + b c + c a ) N \frac{(a+b)(b+c)(c+a)}{(a+b+c)(ab+bc+ca)}\geq N

can be expressed in the form α β \frac{\alpha}{\beta} , where α \alpha and β \beta are coprime, positive integers. Find the value of α + β \alpha+\beta .


The answer is 17.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

( a + b ) ( b + c ) ( c + a ) = a b 2 + a 2 b + b 2 c + b c 2 + a c 2 + a 2 c + 2 a b c (a+b)(b+c)(c+a) = ab^2 + a^2b + b^2c + bc^2 + ac^2 + a^2c + 2abc

And ( a + b + c ) ( a b + b c + c a ) = a b 2 + a 2 b + b 2 c + b c 2 + a c 2 + a 2 c + 3 a b c (a+b+c)(ab+bc+ca) = ab^2 + a^2b + b^2c + bc^2 + ac^2 + a^2c + 3abc

So ( a + b ) ( b + c ) ( c + a ) ( a + b + c ) ( a b + b c + c a ) = a b 2 + a 2 b + b 2 c + b c 2 + a c 2 + a 2 c + 2 a b c a b 2 + a 2 b + b 2 c + b c 2 + a c 2 + a 2 c + 3 a b c \dfrac{(a+b)(b+c)(c+a)}{(a+b+c)(ab+bc+ca)} = \dfrac{ab^2 + a^2b + b^2c + bc^2 + ac^2 + a^2c + 2abc}{ab^2 + a^2b + b^2c + bc^2 + ac^2 + a^2c + 3abc }

= 1 a b c a b 2 + a 2 b + b 2 c + b c 2 + a c 2 + a 2 c + 3 a b c = 1 a b c ( a + b + c ) ( a b + b c + c a ) = 1 - \dfrac{abc}{ab^2 + a^2b + b^2c + bc^2 + ac^2 + a^2c + 3abc} = 1 -\dfrac{abc}{(a+b+c)(ab+bc+ca)}

So, To find N N , we have to find maximum of a b c ( a + b + c ) ( a b + b c + c a ) \dfrac{abc}{(a+b+c)(ab+bc+ca)}

WLOG, a b c b c c a a b a \geq b \geq c \implies bc \leq ca \leq ab .

Therefore by Chebyshev's Inequality,

( a + b + c ) ( b c + c a + a b ) 3 ( a b c + a b c + a b c ) (a+b+c)(bc+ca+ab) \geq 3(abc+abc+abc)

( a + b + c ) ( b c + c a + a b ) 9 ( a b c ) (a+b+c)(bc+ca+ab) \geq 9(abc)

1 9 a b c ( a + b + c ) ( b c + c a + a b ) \dfrac{1}{9} \geq \dfrac{abc}{(a+b+c)(bc+ca+ab)} .

Therefore, N = 1 1 9 = 8 9 N = 1 - \frac{1}{9} =\boxed{ \frac{8}{9}}

Could you explain to me why if I put a = 1 a=1 , b = 2 b=2 and c = 3 c=3 the result is bigger?

David Nasr - 6 years, 8 months ago

Nice solution!

BTW, using AM-GM rule on each term is also giving the same answer. Can you explain why does that happen? It happens many times.

Kartik Sharma - 6 years, 8 months ago

Log in to reply

I'm guessing that happens because the equality occurs when all the terms are equal. No idea how to prove it though...

Siddhartha Srivastava - 6 years, 8 months ago

Log in to reply

Hmm yeah! But it happens many times!!

Kartik Sharma - 6 years, 8 months ago

Log in to reply

@Kartik Sharma I'll post a solution soon. It makes use of the AM-GM Inequality.

Victor Loh - 6 years, 8 months ago

Log in to reply

@Victor Loh been almost a month

Wuu Yyiizzhhoouu - 6 years, 7 months ago

The expression being symmetrical in a, b and c. In most of such cases, the equality always holds at a = b = c a=b=c . So lets put a = b = c = k ( s o m e o t h e r c o n s t a n t ) a=b=c=k(some other constant) . The value of the expression comes out to be 8 9 \boxed{\frac{8}{9}}

Sandeep Bhardwaj - 6 years, 8 months ago

Log in to reply

That is not a proof. There are lots of counter examples to such a claim.

Calvin Lin Staff - 6 years, 8 months ago

Log in to reply

Can you give a example please.

Akshay Sharma - 5 years, 5 months ago

Log in to reply

Tristan Chaang
Dec 17, 2017

Let:

3 u = a + b + c 3u=a+b+c

3 v 2 = a b + b c + a c 3v^2 = ab+bc+ac

w 3 = a b c w^3 =abc

By using the u v w u\leq v\leq w method,

( a + b ) ( b + c ) ( c + a ) ( a + b + c ) ( a b + b c + c a ) \frac{(a+b)(b+c)(c+a)}{(a+b+c)(ab+bc+ca)}

= ( a + b + c ) ( a b + b c + c a ) a b c ( a + b + c ) ( a b + b c + c a ) =\frac{(a+b+c)(ab+bc+ca)-abc}{(a+b+c)(ab+bc+ca)}

= 1 w 3 9 u v 2 =1-\frac{w^3}{9uv^2}

1 w 3 9 u 3 \geq 1-\frac{w^3}{9u^3}

= 1 a b c 9 ( a + b + c 3 ) 3 = 1-\frac{abc}{9(\frac{a+b+c}{3})^3}

1 a b c 9 a b c \geq 1-\frac{abc}{9abc} (AM-GM)

= 8 9 = \boxed{\frac{8}{9}}

The equality holds when a = b = c a=b=c .

You don't need AM-GM in this solution, the uvw method implies uv^2 > w^3.

Andre Bourque - 2 years, 10 months ago
Nut Nutthapong
Apr 1, 2015

By AM-GM , we'll get (a+b)(b+c)(c+a) >= 8abc , (a+b+c) >= 3(abc)^(1/3) and (ab+bc+ca) >= 3(abc)^(2/3) so , 8abc/[(3(abc)^(1/3))(3(abc)^(2/3))] = 8/9 >= N so , a+b=8+9=17

To minimize the LHS, we have to minimize the numerator and maximize the denominator. Hence, your approach would not work.

Calvin Lin Staff - 4 years, 6 months ago
Reineir Duran
Dec 10, 2015

Lakas neto!

Jun Arro Estrella - 4 years, 5 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...