infinite fraction ( 2 e z ) \left(2e^z\right)

Calculus Level 3

Consider the following fraction:

1 + 3 + 5 + 7 + 9 + 11 + 12 10 8 6 4 2 \LARGE 1+\frac{3+\frac{5+\frac{7+\frac{9+\frac{11+\frac{⋰}{12}}{10}}{8}}{6}}{4}}{2}

The fraction can be formalized via recursive definition as a 1 a_1 where a n = n + a n + 2 n + 1 a_n=n+\frac{a_{n+2}}{n+1} but I would highly recommend trying to intuitively simplify the fraction shown above into some sort of series and then

What is the answer?


The answer is 3.29744.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

This fraction can be expressed as: 1 + 3 2 + 5 2 × 4 + 7 2 × 4 × 6 + 9 2 × 4 × 6 × 8 + = 1 2 0 × 0 ! + 3 2 1 × 1 ! + 5 2 2 × 2 ! + 7 2 3 × 3 ! + 9 2 4 × 4 ! + 1+\dfrac{3}{2}+\dfrac{5}{2\times4}+\dfrac{7}{2\times4\times6}+\dfrac{9}{2\times4\times6\times8}+\cdots=\dfrac{1}{2^0\times0!}+\dfrac{3}{2^1\times1!}+\dfrac{5}{2^2\times2!}+\dfrac{7}{2^3\times3!}+\dfrac{9}{2^4\times4!}+\cdots We change it into the summation form:

k = 0 2 k + 1 2 k k ! = k = 0 2 k 2 k k ! + k = 0 1 2 k k ! = k = 1 1 2 k 1 ( k 1 ) ! + k = 0 1 2 k k ! = k = 0 1 2 k k ! + k = 0 1 2 k k ! = 2 k = 0 1 2 k k ! = 2 k = 0 ( 1 2 ) k 1 k ! = 2 e 1 2 = 2 e 3.29744 \quad\displaystyle\sum_{k=0}^\infty \dfrac{2k+1}{2^kk!} \\ =\displaystyle\sum_{k=0}^\infty \dfrac{2k}{2^kk!}+\displaystyle\sum_{k=0}^\infty \dfrac{1}{2^kk!} \\= \displaystyle\sum_{k=1}^\infty \dfrac{1}{2^{k-1}(k-1)!} + \displaystyle\sum_{k=0}^\infty \dfrac{1}{2^kk!} \\=\displaystyle\sum_{k=0}^\infty \dfrac{1}{2^kk!} +\displaystyle\sum_{k=0}^\infty \dfrac{1}{2^kk!} \\=2\displaystyle\sum_{k=0}^\infty \dfrac{1}{2^kk!} \\=2\displaystyle\sum_{k=0}^\infty \left(\dfrac{1}{2}\right)^k\dfrac{1}{k!} \\= 2e^\frac{1}{2}=2\sqrt{e}\approx\boxed{3.29744}

well done that was the same solution I came up with, only once I came up with the summation form I first put it into wolframalpha to get the answer, 2 e 2\sqrt{e} then I later realized it might have to do with the e x = i = 0 x i i ! e^x=\sum\limits_{i=0}^{∞}{\frac{x^i}{i!} }

chase marangu - 1 year, 6 months ago

Log in to reply

interesting. Tell me about the kinds of people though

Alexander Shannon - 1 year, 6 months ago

Log in to reply

@Alexander Shannon what do u mean?

chase marangu - 1 year, 6 months ago

Log in to reply

@Chase Marangu Why did you change the "about" part? :D Sorry, it was more interesting than the math, so I got curious

Alexander Shannon - 1 year, 6 months ago

Log in to reply

@Alexander Shannon @Alexander Shannon what about part?? What are u talkinh about?​??

chase marangu - 1 year, 6 months ago
Chew-Seong Cheong
Nov 14, 2019

Let the given fraction be Q Q . Then we have

Q = 1 + 3 2 + 5 2 4 + 7 2 4 6 + = 1 2 0 0 ! + 3 2 1 1 ! + 5 2 2 2 ! + 7 2 3 3 ! + = n = 0 2 n + 1 2 n n ! = n = 1 n 2 n 1 n ! + n = 0 1 2 n n ! Replace 1 2 by x = n = 1 n x n 1 n ! + n = 0 x n n ! = d d x e x + e x = e x + e x Put back 1 2 as x = 2 e 3.29744 \begin{aligned} Q & = 1 + \frac 32 + \frac 5{2\cdot 4} + \frac 7{2\cdot 4 \cdot 6} + \cdots \\ & = \frac 1{2^0\cdot 0!} + \frac 3{2^1\cdot 1!} + \frac 5{2^2\cdot 2!} + \frac 7{2^3\cdot 3!} + \\ & = \sum_{n=0}^\infty \frac {2n+1}{2^nn!} \\ & = \sum_{n=1}^\infty \frac n{2^{n-1}n!} + \sum_{n=0}^\infty \frac 1{2^nn!} & \small \blue{\text{Replace }\frac 12 \text{ by }x} \\ & = \sum_{n=1}^\infty \frac {nx^{n-1}}{n!} + \sum_{n=0}^\infty \frac {x^n}{n!} \\ & = \frac d{dx}e^x + e^x \\ & = e^x + e^x & \small \blue{\text{Put back }\frac 12 \text{ as }x} \\ & = 2\sqrt e \approx \boxed{3.29744} \end{aligned}

interesting using the n x n 1 n ! \frac{n*x^{n-1}}{n!} series expression of d d x e x \frac{d}{dx}{e^x} . Well done solving this!

chase marangu - 1 year, 6 months ago

Log in to reply

Thanks. Have you up-voted?

Chew-Seong Cheong - 1 year, 6 months ago

Log in to reply

yup​‌‌‍‍​‍‌‌​​‌​‍‍‍

chase marangu - 1 year, 6 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...