Infinite Nested Radical

Algebra Level 5

Find the value of

6 + 3 + 3 2 + 3 8 + 3 128 + \displaystyle \sqrt{6 + \sqrt{3 + \sqrt{\frac{3}{2} + \sqrt{\frac{3}{8} + \sqrt{\frac{3}{128} + \ldots }}}}}

Try harder one here

Details

  • Answer upto 3 decimal places


The answer is 2.849.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Pranjal Jain
Nov 6, 2014

Let

S = 6 + 3 + 3 2 + . . . S=\sqrt{6+\sqrt{3+\sqrt{\frac{3}{2}+...}}}

Now note that S 2 = 3 + 3 2 + . . . \frac{S}{\sqrt{2}}= \sqrt{3+\sqrt{\frac{3}{2}+...}} S = 6 + S 2 \Rightarrow S=\sqrt{6+\frac{S}{\sqrt{2}}}

Square and solve the quadratic in S to get S= 2.828 \boxed{2.828}

Hm, why are the terms 6 , 3 , 3 2 , 3 8 , 3 32 6, 3, \frac{3}{2}, \frac{3}{8}, \frac{3}{32} ?

Going by the above, it seems like the terms should be 6 , 3 , 3 2 , 3 4 , 3 8 6, 3, \frac{3}{2}, \frac{3}{4} , \frac{3}{8} ?

Calvin Lin Staff - 6 years, 7 months ago

Log in to reply

@Krishna Sharma Before I remove the flag, can you explain what the terms of the sequence are supposed to be?

Calvin Lin Staff - 6 years, 7 months ago

Log in to reply

6, 6/2, 6/4, 6/16, 6/256.....

Krishna Sharma - 6 years, 7 months ago

Log in to reply

@Krishna Sharma Thanks! That makes sense to me now. I see how those terms are used.

Calvin Lin Staff - 6 years, 7 months ago

Hm didn't noticed! Then I was wondering why are the "stupid" people reporting this problem! Still got approximate result! :P

Pranjal Jain - 6 years, 7 months ago

S/√2=(3+√(3/4+√(3/32+√(3/2048...))) so your solution is not true because 1/2 became 1/4 in second root then 1/16 in third...

Nikola Djuric - 6 years, 6 months ago

Same answer as me! Nicely explained.

Michael Ng - 6 years, 7 months ago
Aareyan Manzoor
Dec 7, 2014

first 3 2 + 3 8 + 3 128 + . . . . . \sqrt{\frac {3}{2}+\sqrt{\frac {3}{8}+\sqrt{\frac {3}{128}+\sqrt{..... \infty}}}} can be factorised to 3 2 + 1 2 3 2 + 1 2 3 2 + 1 2 . . . . \sqrt{\frac {3}{2}+\frac{1}{2}\sqrt{\frac {3}{2}+\frac{1}{2}\sqrt{\frac {3}{2}+\frac{1}{2}....\infty}}} we get that 3 2 + 1 2 3 2 + 1 2 3 2 + 1 2 . . . . = 1.5 \sqrt{\frac {3}{2}+\frac{1}{2}\sqrt{\frac {3}{2}+\frac{1}{2}\sqrt{\frac {3}{2}+\frac{1}{2}....\infty}}} = 1.5 now substiute 6 + 3 + 3 2 + 3 8 + 3 128 + . . . . . = 6 + 3 + 1.5 \sqrt {6+\sqrt{3+\sqrt{\frac {3}{2}+\sqrt{\frac {3}{8}+\sqrt{\frac {3}{128}+\sqrt{..... \infty}}}}}} = \sqrt {6+\sqrt{3+1.5}} now solve by calculator 6 + 4.5 = 6 + 3 2 2 = 12 + 3 2 2 = 2.849 \sqrt{6+\sqrt{4.5}}= \sqrt{6+\frac{3\sqrt{2}}{2}}=\sqrt{\frac{12+3\sqrt{2}}{2}}= \boxed{2.849}

i got the exact anwser

Aareyan Manzoor - 6 years, 6 months ago
Nikola Djuric
Dec 6, 2014

Let p = 6 + 3 + 3 / 2 + 3 / 128 + . . . p=\sqrt{6+\sqrt{3+\sqrt{3/2+\sqrt{3/128+...}}}} ,

so p ² = 6 + 3 + 3 / 2 + 3 / 8 + 3 / 128 + . . . p²=6+\sqrt{3+\sqrt{3/2+\sqrt{3/8+\sqrt{3/128+...}}}}

From that p ² 6 2 = 6 + 6 + 6 + . . . = 3 {p²-6}\sqrt2=\sqrt{6+\sqrt{6+\sqrt{6+...}}}=3

.So we get p ² = 6 + 3 / 2 = 12 + 3 2 / 2 p²=6+3/\sqrt2={12+3\sqrt2}/2

so p = 12 + 3 2 / 2 p=\sqrt{{12+3\sqrt2}/2}

and p is approximately 2.849...

I have edited the solution, please double check that I didn't alter the meaning in any way

Trevor Arashiro - 6 years, 6 months ago

Log in to reply

p = 12 + 3 2 2 \displaystyle p = \sqrt{\dfrac{12 + 3\sqrt{2}}{2}}

Krishna Sharma - 6 years, 6 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...