Infinite product

Calculus Level 3

2 2 1 × 3 × 4 2 3 × 5 × 6 2 5 × 7 × \large \frac{2^2}{1\times 3} \times \frac{4^2}{3\times 5}\times \frac{6^2}{5\times 7}\times \cdots

Find the product above.


The answer is 1.5708.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Apr 19, 2017

P = lim n 2 2 1 × 3 × 4 2 3 × 5 × 6 2 5 × 7 × × ( 2 n ) 2 ( 2 n 1 ) ( 2 n + 1 ) = lim n 2 2 n ( n ! ) 2 ( 2 n 1 ) ! ! ( 2 n + 1 ) ! ! By Stirling’s formula: n ! 2 π n n + 1 2 e n = lim n 2 2 n ( n ! ) 2 ( 2 n ) ! 2 n n ! × ( 2 n + 2 ) ! 2 n + 1 ( n + 1 ) ! = lim n 2 4 n + 1 ( n ! ) 3 ( n + 1 ) ! ( 2 n ) ! ( 2 n + 2 ) ! = lim n 2 4 n + 1 ( 2 π n n + 1 2 e n ) 3 ( 2 π ( n + 1 ) n + 3 2 e n 1 ) ( 2 π ( 2 n ) 2 n + 1 2 e 2 n ) ( 2 π ( 2 n + 2 ) 2 n + 5 2 e 2 n 2 ) = lim n 2 4 n + 3 π 2 n 3 n + 3 2 ( n + 1 ) n + 3 2 e 4 n 1 2 4 n + 4 π n 2 n + 1 2 ( n + 1 ) 2 n + 5 2 e 4 n 2 = lim n 2 4 n + 3 π 2 n 4 n + 3 e 4 n 1 2 4 n + 4 π n 4 n + 3 e 4 n 2 = π 2 1.5708 \begin{aligned} P & = \lim_{n \to \infty} \frac {2^2}{1\times 3} \times \frac {4^2}{3\times 5} \times \frac {6^2}{5\times 7} \times \cdots \times \frac {(2n)^2}{(2n-1)(2n+1)} \\ & = \lim_{n \to \infty} \frac {2^{2n} (n!)^2}{(2n-1)!!(2n+1)!!} & \small \color{#3D99F6} \text{By Stirling's formula: }n! \sim \sqrt{2\pi} n^{n+\frac 12}e^{-n} \\ & = \lim_{n \to \infty} \frac {2^{2n} (n!)^2}{\frac {(2n)!}{2^nn!} \times \frac {(2n+2)!}{2^{n+1}(n+1)!}} \\ & = \lim_{n \to \infty} \frac {2^{4n+1} (n!)^3(n+1)!}{(2n)!(2n+2)!} \\ & = \lim_{n \to \infty} \frac {2^{4n+1} \left(\sqrt {2\pi} n^{n+\frac 12}e^{-n}\right)^3 \left(\sqrt {2\pi} (n+1)^{n+\frac 32}e^{-n-1}\right)}{\left(\sqrt {2\pi} (2n)^{2n+\frac 12}e^{-2n}\right)\left(\sqrt {2\pi} (2n+2)^{2n+\frac 52}e^{-2n-2}\right)} \\ & = \lim_{n \to \infty} \frac {2^{4n+3}\pi^2{\color{#3D99F6}n^{3n+\frac 32}(n+1)^{n+\frac 32}}e^{-4n-1}}{2^{4n+4}\pi{\color{#3D99F6}n^{2n+\frac 12}(n+1)^{2n+\frac 52}}e^{-4n-2}} \\ & = \lim_{n \to \infty} \frac {2^{4n+3}\pi^2{\color{#3D99F6}n^{4n+3}}e^{-4n-1}}{2^{4n+4}\pi{\color{#3D99F6}n^{4n+3}}e^{-4n-2}} \\ & = \frac \pi 2 \approx \boxed{1.5708} \end{aligned}

Actually, lim n Γ ( n + 1 ) Γ ( n + 1 2 ) = \displaystyle \lim_{n \to \infty}\frac{\Gamma (n+1)}{\Gamma (n + \frac {1}{2})}=\infty and lim n Γ ( n + 1 ) Γ ( n + 3 2 ) = 0 \displaystyle \lim_{n \to \infty}\frac{\Gamma (n+1)}{\Gamma (n + \frac {3}{2})}=0 .

So, lim n [ Γ ( n + 1 ) ] 2 Γ ( n + 1 2 ) Γ ( n + 3 2 ) [ Γ ( ) ] 2 Γ ( ) Γ ( ) \displaystyle \lim_{n \to \infty}\frac{[\Gamma (n+1)]^2}{\Gamma (n + \frac {1}{2})\Gamma (n + \frac {3}{2})}\neq \frac{[\Gamma (\infty)]^2}{\Gamma (\infty)\Gamma (\infty)}

However, lim n [ Γ ( n + 1 ) ] 2 Γ ( n + 1 2 ) Γ ( n + 3 2 ) = 1 \displaystyle \lim_{n \to \infty}\frac{[\Gamma (n+1)]^2}{\Gamma (n + \frac {1}{2})\Gamma (n + \frac {3}{2})}=1 , but it's not so trivial to prove.

Anirban Karan - 4 years, 1 month ago

Log in to reply

Yes, you are right.

Chew-Seong Cheong - 4 years, 1 month ago

Thanks, I have changed the solution using Stirling's formula. I suppose proving lim n [ Γ ( n + 1 ) ] 2 Γ ( n + 1 2 ) Γ ( n + 3 2 ) = 1 \displaystyle \lim_{n \to \infty}\frac{[\Gamma (n+1)]^2}{\Gamma (n + \frac {1}{2})\Gamma (n + \frac {3}{2})}=1

Chew-Seong Cheong - 4 years, 1 month ago

Log in to reply

Though Stirling's formula is an approximation, still this is a good and interesting solution......However, while writing down Stirling's formula explicitly, there is a little mistake; It should be n ! 2 π n ( n + 1 2 ) e n n! \sim \sqrt{2\pi}\,n^{(n+\frac{1}{2})}\color{#3D99F6}e^{-n} in stead of e 1 \color{#3D99F6}e^{-1}

Anirban Karan - 4 years, 1 month ago

Log in to reply

@Anirban Karan Thanks. Yes, the good thing is it is asymptotic. It is true as n n \to \infty .

Chew-Seong Cheong - 4 years, 1 month ago

Following your argument, lim n [ Γ ( n + a ) ] 2 Γ ( n + b ) Γ ( n + c ) = 1 \displaystyle \lim_{n \to \infty}\frac{[\Gamma (n+a)]^2}{\Gamma (n + b)\Gamma (n +c)}=1 for any finite a , b , c a,b,c . But that's not true.

Anirban Karan - 4 years, 1 month ago
Anirban Karan
Apr 19, 2017

The given infinite product P = ( 2 2 1 3 ) ( 4 2 3 5 ) ( 6 2 5 7 ) . . . . . = n = 1 [ ( 2 n ) 2 ( 2 n 1 ) ( 2 n + 1 ) ] = n = 1 [ ( 2 n ) 2 ( 2 n ) 2 1 ] = n = 1 [ 1 1 1 ( 2 n ) 2 ] \begin{aligned} P&=\Big(\frac{2^2}{1\cdot 3}\Big)\cdot\Big(\frac{4^2}{3\cdot 5}\Big)\cdot\Big(\frac{6^2}{5\cdot 7}\Big)\cdot .....& \\ &=\prod_{n=1}^\infty\bigg[\frac{(2n)^2}{(2n-1)(2n+1)}\bigg]=\prod_{n=1}^\infty\bigg[\frac{(2n)^2}{(2n)^2-1}\bigg]& \\ &=\prod_{n=1}^\infty\bigg[\frac{1}{1-\frac{1}{(2n)^2}}\bigg]\end{aligned}

Product expansion of sin z \sin z is sin z = z n = 1 ( 1 z 2 n 2 π 2 ) \quad\color{#3D99F6}\displaystyle\sin z=z\prod_{n=1}^\infty\Big(1-\frac{z^2}{n^2\pi^2}\Big)

So, P 1 = n = 2 ( 1 1 n 2 ) = lim z π sin z z ( 1 z 2 n 2 π 2 ) = lim z π cos z ( 1 3 z 2 n 2 π 2 ) = 1 2 [ using L’Hospital’s Rule ] \displaystyle P_1=\prod_{n=2}^\infty\Big(1-\frac{1}{n^2}\Big)=\lim_{z\rightarrow\pi} \frac{\sin z}{z(1-\frac{z^2}{n^2\pi^2})}=\lim_{z\rightarrow\pi} \frac{\cos z}{(1-\frac{3z^2}{n^2\pi^2})}=\frac{1}{2}\quad\small \color{#3D99F6} [\text{using L'Hospital's Rule}]

Again, product expansion of cos z \cos z is cos z = n = 1 [ 1 z 2 ( n 1 2 ) 2 π 2 ] \quad\color{#3D99F6}\displaystyle\cos z=\prod_{n=1}^\infty\Big[1-\frac{z^2}{(n-\frac{1}{2})^2\pi^2}\Big]

So, P 2 = n = 2 [ 1 1 ( 2 n 1 ) 2 ] = lim z π 2 cos z 1 z 2 ( π / 2 ) 2 = lim z π 2 sin z 2 z ( π / 2 ) 2 = π 4 [ using L’Hospital’s Rule ] \displaystyle P_2 =\prod_{n=2}^\infty\Big[1-\frac{1}{(2n-1)^2}\Big]=\lim_{z\rightarrow\frac{\pi}{2}} \frac{\cos z}{1-\frac{z^2}{(\pi/2)^2}}=\lim_{z\rightarrow\frac{\pi}{2}} \frac{\sin z}{\frac{2z}{(\pi/2)^2}}=\frac{\pi}{4} \quad\small \color{#3D99F6} [\text{using L'Hospital's Rule}]

Then, P = 1 P 1 / P 2 = P 2 P 1 = π 2 = 1.5708 \displaystyle P=\frac{1}{P_1/P_2}=\frac{P_2}{P_1}=\frac{\pi}{2}= \boxed{1.5708}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...