Infinitely Nested Surds

Algebra Level 3

9 27 128 9 27 128 . . . = ? \large\sqrt{9\sqrt{27\sqrt{128\sqrt{9\sqrt{27\sqrt{128\sqrt{...}}}}}}} = \ ?

Image credit: Lachlan Fearnley
9 27 18 128

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

31 solutions

Lim Zi Heng
Dec 29, 2013

The first step to do is simplify 9 27 128 \sqrt{9 \sqrt{27 \sqrt{128}}}

9 27 128 \sqrt{9 \sqrt{27 \sqrt{128}}}

= 9 27 × 8 2 \sqrt{9 \sqrt{27 \times 8 \sqrt{2}}}

= 9 216 2 \sqrt{9 \sqrt{216\sqrt{2}}}

= 9 × 6 6 2 \sqrt{9 \times 6 \sqrt{6\sqrt{2}}}

= 54 6 2 \sqrt{54 \sqrt{6\sqrt{2}}}

= 3 6 6 2 3\sqrt{6 \sqrt{6\sqrt{2}}}

By substituting 9 27 128 = 3 6 6 2 \sqrt{9 \sqrt{27 \sqrt{128}}} = 3\sqrt{6 \sqrt{6\sqrt{2}}}

We will get,

3 6 6 2 × 3 6 6 2 3\sqrt{6 \sqrt{6\sqrt{2\times 3\sqrt{6 \sqrt{6\sqrt{2 \ldots}}}}}}

= 3 6 6 6 6 6 6 3 \sqrt{6 \sqrt{6 \sqrt{6 \sqrt{6 \sqrt{6 \sqrt{6 \sqrt \ldots }}}}}}

Let x = 6 6 6 6 6 6 x = \sqrt{6 \sqrt{6 \sqrt{6 \sqrt{6 \sqrt{6 \sqrt{6 \sqrt \ldots }}}}}}

x 2 = 6 6 6 6 6 6 x^2 =6 \sqrt{6 \sqrt{6 \sqrt{6 \sqrt{6 \sqrt{6 \sqrt \ldots }}}}}

So, 6 x = x 2 6x = x^2

x = 6 x=6

3 x = 3 6 6 6 6 6 6 3x= 3 \sqrt{6 \sqrt{6 \sqrt{6 \sqrt{6 \sqrt{6 \sqrt{6 \sqrt \ldots }}}}}}

So,

3 6 6 6 6 6 6 = 18 3 \sqrt{6 \sqrt{6 \sqrt{6 \sqrt{6 \sqrt{6 \sqrt{6 \sqrt \ldots }}}}}} = \boxed {18}

So the answer is 18

Another way to do this is to note that the given expression is just

9 1 2 2 7 1 4 . . . 12 8 1 8 . . . 9 1 16... 9^{\frac{1}{2}}27^{\frac{1}{4}. . .}128^{\frac{1}{8}. . .}9^{\frac{1}{16. . .}}

Which is just

9 1 2 + 1 16 + 1 128 . . . 2 7 geometric series 12 8 geometric series 9^{\frac{1}{2}+\frac{1}{16}+\frac{1}{128}. . .}27^{\text{geometric series}}128^{\text{geometric series}} Summing the geometric series in the exponents gives us 9 4 7 2 7 2 7 12 8 1 7 9^{\frac{4}{7}}27^{\frac{2}{7}}128^{\frac{1}{7}} which easily simplifies to 18.

Rahul Saha - 7 years, 5 months ago

Log in to reply

thanks for the tip

Jay Cyril Mijares - 7 years, 5 months ago

Hi, can you explain how to get 4 7 f r o m 1 2 + 1 16 + 1 128 . . . \frac{4}{7} from \frac{1}{2} +\frac{1}{16} +\frac{1}{128} ... I got stuck there, thanks

Nina Wiryanto - 7 years, 5 months ago

Log in to reply

Well for that geometric convergence series, I would've done something like this:

1/2 + 1/16 + 1/128 + ... = 1/2 (1+1/8 + 1/64 + ...) =1/2 ( (1/8)^0 + (1/8)^ 1+ (1/8)^2 + ...)

So from the last equation above, you would just have a convergence series with a base of 8 that starts at the exponent 0 and is summed all the way to infinity all by multiplied by a factor of 1/2. That should give you 4/7.

Sorry for the formatting but for some reason I can't get latex to work. I am using Chrome. Do you think that might be part of the problem? Maybe you could help me out with this lol With proper formatting I would've made it a lot nicer to read. Sorry about that.

\frac {1}{2}

Moe El-Youssef - 7 years, 5 months ago

Log in to reply

@Moe El-Youssef Thanks a lot :D

About your problem, you have to wrap latex in \­( ... \­) or \­[ ... \­]

Nina Wiryanto - 7 years, 5 months ago

Log in to reply

@Nina Wiryanto T h a n k Y o u \frac{Thank}{You}

Moe El-Youssef - 7 years, 5 months ago

Let, y=(the sequence given) Since this is an infinite sequence, y^8=(3^14) (2^7) y Hence, y^7=(3^14) (2^7) or, y=(3^2) 2

Ayan Sen - 7 years, 5 months ago

Log in to reply

nice,simple and fast, I din't thought of it

Lim Zi Heng - 7 years, 5 months ago

Log in to reply

The solution I had in mind is similar to Ayan Sen's, but modifying the surd into all '3's is an interesting approach as well.

Wee Xian Bin - 7 years, 5 months ago

hey Ayan plz tell me how did you get y^8=(3^14)(2^7)y..... plz explain it

Kavyansh Chourasia - 7 years, 4 months ago

i also did it this way

Ashiqul Islam - 7 years, 5 months ago

That's exactly what I did. Good job.

Muhammad Shariq - 7 years, 5 months ago

Let x = sqrt( 9 sqrt( 27 sqrt(128*x) ) ) and solve for x

Mohamed Abd Elhady - 7 years, 1 month ago

simple and fast good thinking

Saksham Agrawal - 7 years, 5 months ago

that's cool

arafat mahmud - 7 years, 5 months ago

nice!!! well done

Souham Ghosh - 7 years, 4 months ago

Thanks!

Sangeeta Mishra - 7 years, 4 months ago

I = sqrt(9 sqrt(27 sqrt(128 ...))))). We have ((((I^2)/9)^2/27)^2/128) = I -> I^7 = (9^4) (27^2)*128 = 18^7 -> I= 18

Anderson Schroeder - 7 years, 4 months ago

Another method is- consider root 9 root 27 root 128 root 9... as x. sqare both sides. so, we get, 9 [root{27(root128.....)}]=x^2. squaring qnce more, we get- 81 27 {root128(root9.....)}=x^4. squaring once more, (81^2) (27^2) 128 [root9{root27.....}]= x^8 putting root9root27root128..=x in the L.H.S of this equation, (81^2) (27^2) (1280) x=x^8. dividing both sides by x, (as x is non zero), we get- (81^2) (27^2) 128=x^7 which implies, x=7th root of [(81^2) (27^2)*128]=18

Rupsa Mukherjee - 7 years, 4 months ago

nice job it is simple to understand

murali krishna - 7 years, 4 months ago

man your way for this solution was amazing...did u participate in Malaysia mathematics Olympiad competition or what? i'm some kind of jealous with your way of thinking -_-

Hazim Afifi - 7 years, 2 months ago

x = 9 27 128 9 x = \sqrt {9\sqrt {27\sqrt {128\sqrt{9\sqrt {\ldots}}}}}

x = 9 27 128 x x = \sqrt {9\sqrt {27\sqrt {128x}}}

x 2 9 = 27 128 x \frac {x^{2}}{9} = \sqrt {27\sqrt {128x}}

x 4 81 27 = 8 2 x \frac {x^{4}}{81\cdot27} = 8\sqrt {2x}

x 7 = 3 14 2 7 x^{7} = 3^{14}\cdot2^{7}

x = 3 2 2 = 18 x = 3^{2}\cdot2 = \boxed {18} .

Step 2 2 is equal to x 3 = 27 128 x \frac {x}{3} = \sqrt{\sqrt{27\sqrt{128x}}}

Square both sides and you get x 2 9 = 27 128 x \frac {x^{2}}{9} = \sqrt{27\sqrt{128x}}

Square again and get x 4 81 = 27 128 x \frac {x^{4}}{81} = 27\sqrt {128x} . Divide by 27 27 , and by this way you get x 4 81 27 = 8 2 x \frac {x^{4}}{81 \cdot 27} = 8\sqrt {2x} . So that's the transition from 3 3 to 4 4 . But this is just a way of manipulating the equation. You can manipulate it differently. The point is to realize that x x is inside the radical because it's infinite.

Diego E. Nazario Ojeda - 7 years, 5 months ago

Same here

Abe Vallerian - 7 years, 5 months ago

@Diego, thanks:)

Advay Atul - 7 years, 5 months ago

I did the same..

Ayush Garg - 7 years, 5 months ago

Used the same approach! :)

Nicholas Wei - 7 years, 5 months ago

perfect

Ahmed Alshahat - 7 years, 4 months ago

same here

uday bhaskar - 7 years, 4 months ago

I also did it did way!!

Rupsa Mukherjee - 7 years, 4 months ago

same

Sudarshan Shrikanthan - 7 years, 4 months ago

nice

razi ur rehman - 7 years, 4 months ago

direct

Makh Makh - 7 years, 3 months ago

That's smooth, but can you explain the transition from step 3 to 4? Btw I study in class 10 in an Indian board, and therefore have no knowledge of a geometric series. Do try to explain without using that concept. Thanks!

Advay Atul - 7 years, 5 months ago

Log in to reply

He's using the fact that 128 = 64 × 2 128 = 64\times 2 and rewriting as 64 × 2 × x = 64 × 2 x = 8 2 x \sqrt{64\times2\times x} = \sqrt{64} \times \sqrt{2x} = 8 \sqrt2x

Carl Denton - 7 years, 5 months ago
Mohamed Abdelaaty
Dec 29, 2013

Let the solution be x x , since the term occurs recursively it could be rewritten as:

9 27 128 x = x = > \sqrt{9 \sqrt{27 \sqrt{128x}}} = x =>

By raising the equation to power 8:

9 4 2 7 2 128 x = x 8 = > 9^4 * 27^2 * 128x = x^8 =>

3 14 2 7 = x 7 = > 3^{14} * 2^7 = x^7 =>

x = 3 2 2 = 18 . x = 3^2 * 2 = \boxed{18}.

this is the real method

Attain k Gupta - 7 years, 5 months ago

i like this method.. very simple..

Erniel Boyose - 7 years, 5 months ago

thanks!

rugved dhore - 7 years, 4 months ago

Why did u taise x to the power 8?

toshali mohapatra - 4 years, 6 months ago
Carl Araya
Dec 30, 2013

This is my first time posting a solution and using LaTeX, so expect my solution to be bad :/

Let: 9 27 128 9 27 128 . . . = x \sqrt{9\sqrt{27\sqrt{128\sqrt{9\sqrt{27\sqrt{128\sqrt{...}}}}}}} = x Then 9 27 128 9 27 128 . . . = x 2 9\sqrt{27\sqrt{128\sqrt{9\sqrt{27\sqrt{128\sqrt{...}}}}}} = x^{2} 27 128 9 27 128 . . . = x 2 9 \sqrt{27\sqrt{128\sqrt{9\sqrt{27\sqrt{128\sqrt{...}}}}}} = \frac{x^{2}}{9} 27 128 9 27 128 . . . = x 4 9 2 27\sqrt{128\sqrt{9\sqrt{27\sqrt{128\sqrt{...}}}}} = \frac{x^{4}}{9^{2}} 128 9 27 128 . . . = x 4 9 2 × 27 \sqrt{128\sqrt{9\sqrt{27\sqrt{128\sqrt{...}}}}} = \frac{x^{4}}{9^{2} \times 27} 128 9 27 128 . . . = x 8 9 4 × 2 7 2 128\sqrt{9\sqrt{27\sqrt{128\sqrt{...}}}} = \frac{x^{8}}{9^{4} \times 27^{2}} 9 27 128 . . . = x 8 9 4 × 2 7 2 × 128 \sqrt{9\sqrt{27\sqrt{128\sqrt{...}}}} = \frac{x^{8}}{9^{4} \times 27^{2} \times 128} Deriving from the first equation gives us: x = x 8 9 4 × 2 7 2 × 128 x = \frac{x^{8}}{9^{4} \times 27^{2} \times 128} 9 4 × 2 7 2 × 128 = x 7 9^{4} \times 27^{2} \times 128 = x^{7} 3 14 × 2 7 = x 7 3^{14} \times 2^{7} = x^{7} 3 2 × 2 = x 3^{2} \times 2 = x 18 = x \boxed{18} = x

No, it's great

Ewerton Xavier - 7 years, 5 months ago

great

abderahmane elkendi - 7 years, 5 months ago

Its great.

Joshua Ong - 7 years, 5 months ago

okay na man

Erniel Boyose - 7 years, 5 months ago

Wow

Lorenzo Dave Timbang - 7 years, 4 months ago

WELL DONE

ASHISH KUMAR - 7 years, 4 months ago

Great solution!!!!!!

Partho Kunda - 7 years, 4 months ago

thanks

Hafizur Rahman - 7 years, 5 months ago
Ajay Maity
Dec 29, 2013

Let x = 9 27 128 9 27 128 . . . . x = \sqrt{9 \sqrt{27 \sqrt{128 \sqrt{9 \sqrt{27 \sqrt{128 \sqrt{....}}}}}}}

x = 9 27 128 x x = \sqrt{9 \sqrt{27 \sqrt{128x}}}

Squaring both sides,

x 2 = 9 27 128 x x^{2} = 9 \sqrt{27 \sqrt{128x}}

Squaring both sides,

x 4 = 9 2 . 27 128 x x^{4} = 9^{2} . 27 \sqrt{128x}

Squaring both sides,

x 8 = 9 4 . 2 7 2 . 128 x x^{8} = 9^{4} . 27^{2} . 128x

Since x = 0 x = 0 can't be the solution, we have

x 7 = 9 4 . 2 7 2 . 128 x^{7} = 9^{4} . 27^{2} . 128

x 7 = 3 8 . 3 6 . 2 7 x^{7} = 3^{8} . 3^{6} . 2^{7}

x 7 = 3 16 . 2 7 x^{7} = 3^{16} . 2^{7}

Taking seventh root on both sides,

x = 3 2 . 2 = 18 x = 3^{2} . 2 = 18

Hello Ajay, there is an "small error", the correct experssion is x^7=3^14*2^7.

Vladimir Staver - 7 years, 5 months ago

Log in to reply

Oh yaa, I noticed the typo now. Thanks!

The second last step is x 7 = 3 14 . 2 7 x^{7} = 3^{14} . 2^{7}

Ajay Maity - 7 years, 5 months ago
Black Jack
Jan 1, 2014

9 27 128 9 27 128 3 2 3 3 2 7 3 2 3 3 2 7 \sqrt{9\sqrt{27\sqrt{128\sqrt{9\sqrt{27\sqrt{128\sqrt{\ldots}}}}}}} \Rightarrow \sqrt{3^2\sqrt{3^3\sqrt{2^7\sqrt{3^2\sqrt{3^3\sqrt{2^7\sqrt{\ldots}}}}}}} is equal to 3 6 6 6 6 6 3\sqrt{6\sqrt{6\sqrt{6\sqrt{6\sqrt{6\sqrt{\ldots}}}}}}

Now I want to demostrate that x x x = x \sqrt{x\sqrt{x\sqrt{x\sqrt{\ldots}}}} = x :

x x x = i = 1 x 2 i \sqrt{x\sqrt{x\sqrt{x\sqrt{\ldots}}}} = \displaystyle \prod_{i=1}^{\infty} x^{2^{-i}}

I know also that log = log \hspace{0.3cm} \log \displaystyle \prod_{}^{} = \displaystyle \sum_{}^{} \log \hspace{0.3cm} because of the properties of logarithms

so l o g a i = 1 x 2 i = i = 1 log a ( x 2 i ) \hspace{0.5cm} log_a \displaystyle \prod_{i=1}^{\infty} x^{2^{-i}} = \displaystyle \sum_{i=1}^{\infty} \log_a (x^{2^{-i}}) \hspace{0.5cm} for a > 0 a > 0 & a 1 a \neq 1

i = 1 2 i log a ( x ) = log a ( x ) i = 1 2 i = log a ( x ) \Rightarrow \displaystyle \sum_{i=1}^{\infty} 2^{-i}\log_a (x) = \log_a (x)\displaystyle \sum_{i=1}^{\infty} 2^{-i} = \log_a(x) since i = 1 2 i = 1 \hspace{0.5cm} \boxed{ \displaystyle \sum_{i=1}^{\infty} 2^{-i} = 1}

so l o g a i = 1 x 2 i = log a ( x ) \hspace{0.5cm} \ log_a \displaystyle \prod_{i=1}^{\infty} x^{2^{-i}} = \log_a(x)

i = 1 x 2 i = x \Rightarrow \displaystyle \prod_{i=1}^{\infty} x^{2^{-i}} = x

so x x x = x \sqrt{x\sqrt{x\sqrt{x\sqrt{\ldots}}}} = x

so 6 6 6 6 6 = 6 \sqrt{6\sqrt{6\sqrt{6\sqrt{6\sqrt{6\sqrt{\ldots}}}}}} = 6

and finally 3 6 6 6 6 6 = 3 6 = 18 \hspace{0.5cm} 3\sqrt{6\sqrt{6\sqrt{6\sqrt{6\sqrt{6\sqrt{\ldots}}}}}} = 3 * 6 = 18

Nice use of product series and log properties :)

Wee Xian Bin - 6 years, 11 months ago

Let's call 9 27 128 9 27 128 . . . = P \sqrt {9\sqrt {27\sqrt {128\sqrt {9\sqrt {27\sqrt {128\sqrt {...}}}}}}}=P then

9 27 128 P = P \sqrt {9\sqrt {27\sqrt {128P}}}=P

Continuing,

9 27 128 P = P 2 9\sqrt {27\sqrt {128P}}=P^2

27 128 P = P 2 9 \sqrt {27\sqrt {128P}}=\frac {P^2}{9}

27 128 P = P 4 3 4 27\sqrt {128P}=\frac {P^4}{3^4}

128 P = P 4 3 7 \sqrt {128P}=\frac {P^4}{3^7}

128 P = P 8 3 14 128P=\frac {P^8}{3^{14}}

P = P 8 2 7 × 3 14 P=\frac {P^8}{2^7\times3^{14}}

P 7 = 2 7 × 3 14 P^7=2^7\times3^{14}

P = 2 × 3 2 = 18 P=2\times3^2=\boxed {18}

Rajesh Mondal
Jan 20, 2014

Let y = 9 27 128 9 27 128 . . . y=\sqrt{9 \sqrt{27 \sqrt{128 \sqrt{9 \sqrt{27 \sqrt{128 \sqrt{...}}}}}}}

Then, we can write

y = 9 27 128 y y=\sqrt{9 \sqrt{27 \sqrt{128 \cdot y}}}

y 2 = 9 27 128 y y^{2}=9 \sqrt{27 \sqrt{128 \cdot y}}

y 4 = 9 2 27 128 y y^{4}=9^{2} \cdot 27 \sqrt{128 \cdot y}

y 8 = 9 4 2 7 2 128 y y^{8}=9^{4} \cdot 27^{2} \cdot 128 \cdot y

y 7 = 9 7 2 7 y^{7}=9^{7} \cdot 2^{7}

y = 2 9 = 18 y=2 \cdot 9=18

For more information

indian type answer

Pratyush Sahoo - 5 years, 9 months ago

gud one .......

Pratyush Sahoo - 5 years, 9 months ago

Let the given surds = y, Then [9[27[128 y = y {{{ Let [ indicate square root sign}}}} Squaring both side we get, 9[27[128 y = y^2 or, 3^2[3^3[2^7 y = y^2 squaring again, we get, 3^4 3^3[2^7 y = y^4 squaring again, we get, 3^8 3^6 2^7 y = y^8 or, 3^8 3^6 2^7 = y^7 or, 3^14 2^7 = y^7 or, 9^7 2^7 = y^7 or,9*2=y i.e y=18

Jeremi Litarowicz
Jan 10, 2014

First, we notice that the sequence of square roots is recursive. We can thus write an equation: x = 9 27 128 x x=\sqrt{9 \sqrt{27 \sqrt{128 x}}} This simplifies to: x 7 = 612220032 x^{7}=612220032 This equation has exactly 7 solutions, but only one of them is real. That solution is 18.

Prasun Biswas
Jan 5, 2014

We use here the formula of sum of infinite Geometric Progression series when common ratio(r) < 1, Sum ( S ) = a 1 r (S)=\frac{a}{1-r} where a a is first term of GP and r r is the common ratio, i.e, ratio between 2 consecutive terms of the GP.

9 27 128 9 27 128 . . . . \sqrt{9 \sqrt{27 \sqrt{128 \sqrt{9 \sqrt{27 \sqrt{128 \sqrt{....}}}}}}}

= 9 1 2 × 2 7 1 4 × 12 8 1 8 × 9 1 16 × 2 7 1 32 × 12 8 1 64 × . . . . . . . . =9^{\frac{1}{2}}\times 27^{\frac{1}{4}}\times 128^{\frac{1}{8}}\times 9^{\frac{1}{16}}\times 27^{\frac{1}{32}}\times 128^{\frac{1}{64}}\times ........

= 9 ( 1 2 + 1 16 + . . . . ) × 2 7 ( 1 4 + 1 32 + . . . . ) × 12 8 ( 1 8 + 1 64 + . . . . . ) =9^{(\frac{1}{2}+\frac{1}{16}+....)}\times 27^{(\frac{1}{4}+\frac{1}{32}+....)}\times 128^{(\frac{1}{8}+\frac{1}{64}+.....)}

= 9 1 2 1 1 8 × 2 7 1 4 1 1 8 × 12 8 1 8 1 1 8 =9^{\frac{\frac{1}{2}}{1-\frac{1}{8}}}\times 27^{\frac{\frac{1}{4}}{1-\frac{1}{8}}}\times 128^{\frac{\frac{1}{8}}{1-\frac{1}{8}}}

= 9 1 2 7 8 × 2 7 1 4 7 8 × 12 8 1 8 7 8 =9^{\frac{\frac{1}{2}}{\frac{7}{8}}}\times 27^{\frac{\frac{1}{4}}{\frac{7}{8}}}\times 128^{\frac{\frac{1}{8}}{\frac{7}{8}}}

= 9 4 7 × 2 7 2 7 × 12 8 1 7 =9^{\frac{4}{7}}\times 27^{\frac{2}{7}}\times 128^{\frac{1}{7}}

= ( 3 2 ) 4 7 × ( 3 3 ) 2 7 × ( 2 7 ) 1 7 =(3^{2})^{\frac{4}{7}}\times (3^{3})^{\frac{2}{7}}\times (2^{7})^{\frac{1}{7}}

= ( 3 ) 2 × 4 7 × ( 3 ) 3 × 2 7 × ( 2 ) 7 × 1 7 =(3)^{2\times \frac{4}{7}}\times (3)^{3\times \frac{2}{7}}\times (2)^{7\times \frac{1}{7}}

= ( 3 ) 8 7 × ( 3 ) 6 7 × ( 2 ) 1 =(3)^{\frac{8}{7}}\times (3)^{\frac{6}{7}}\times (2)^{1}

= ( 3 ) 8 7 + 6 7 × 2 =(3)^{\frac{8}{7}+\frac{6}{7}}\times 2

= ( 3 ) 14 7 × 2 = ( 3 ) 2 × 2 = 9 × 2 = 18 =(3)^{\frac{14}{7}}\times 2 = (3)^{2}\times 2 = 9\times 2 = \boxed{18}

Sorry for the small size in writing powers on top of the nos.

Prasun Biswas - 7 years, 5 months ago
Kenny Lau
Jan 2, 2014

Let x x be 9 27 128 9 27 128 \sqrt{\color{#D61F06}{9}\sqrt{\color{#3D99F6}{27}\sqrt{\color{#20A900}{128}\sqrt{\color{#D61F06}{9}\sqrt{\color{#3D99F6}{27}\sqrt{\color{#20A900}{128}\sqrt{\cdots}}}}}}} . 9 27 128 x = x 3 2 3 3 2 7 x = x 3 2 3 3 2 7 x = x 2 3 3 2 7 x = x 2 3 2 3 3 2 7 x = x 4 3 4 2 7 x = x 4 3 4 3 3 2 7 x = x 8 3 8 3 6 x = x 8 3 8 3 6 2 7 x 7 = 3 14 2 7 x = 3 2 2 x = 18 \begin{array}{rcl} \sqrt{\color{#D61F06}{9}\sqrt{\color{#3D99F6}{27}\sqrt{\color{#20A900}{128}x}}}&=&x\\ \sqrt{\color{#D61F06}{3^2}\sqrt{\color{#3D99F6}{3^3}\sqrt{\color{#20A900}{2^7}x}}}&=&x\\ \color{#D61F06}{3^2}\sqrt{\color{#3D99F6}{3^3}\sqrt{\color{#20A900}{2^7}x}}&=&x^2\\ \sqrt{\color{#3D99F6}{3^3}\sqrt{\color{#20A900}{2^7}x}}&=&\frac{x^2}{\color{#D61F06}{3^2}}\\ \color{#3D99F6}{3^3}\sqrt{\color{#20A900}{2^7}x}&=&\frac{x^4}{\color{#D61F06}{3^4}}\\ \sqrt{\color{#20A900}{2^7}x}&=&\frac{x^4}{\color{#D61F06}{3^4}\cdot\color{#3D99F6}{3^3}}\\ \color{#20A900}{2^7}x&=&\frac{x^8}{\color{#D61F06}{3^8}\cdot\color{#3D99F6}{3^6}}\\ x&=&\frac{x^8}{\color{#D61F06}{3^8}\cdot\color{#3D99F6}{3^6}\cdot\color{#20A900}{2^7}}\\ x^7&=&\color{#69047E}{3^{14}}\cdot\color{#20A900}{2^7}\\ x&=&\color{#69047E}{3^2}\cdot\color{#20A900}2\\ x&=&\boxed{18}\\ \end{array}

how to you colour the numbers

Ranjit Kumar - 7 years, 5 months ago

My method is same with you.

Wong Ne - 7 years, 4 months ago

Great! Math is the language, so one should describe in a simple manner & you did it. :)

Siddhesh Rokde - 7 years, 4 months ago
Eduardo Petry
Dec 29, 2013

Let's call the expression w w and rewrite it as: w = 9 1 / 2 × 2 7 1 / 4 × 12 8 1 / 8 × 9 1 / 16 × 2 7 1 / 32 × 12 8 1 / 64 × w=9^{1/2} \times 27^{1/4} \times 128^{1/8} \times 9^{1/16} \times 27^{1/32} \times 128^{1/64} \times \ldots

If we raise it to the power of 8 8 we get w 8 = 9 4 × 2 7 2 × 12 8 1 × ( 9 1 / 2 × 2 7 1 / 4 × 12 8 1 / 8 × ) w^{8}=9^{4} \times 27^{2} \times 128^{1} \times (9^{1/2} \times 27^{1/4} \times 128^{1/8} \times \ldots) which means w 8 = 9 4 × 2 7 2 × 12 8 1 × w w^{8}=9^{4} \times 27^{2} \times 128^{1} \times w . Manipulating the exponents, we find the answer:

w 7 = 3 8 × 3 6 × 2 7 w 7 = 3 14 × 2 7 w = 3 2 × 2 = 18 w^{7}=3^{8} \times 3^{6} \times 2^{7} \rightarrow w^{7} = 3^{14} \times 2^{7} \rightarrow w = 3^{2} \times 2=\boxed{18}

Nice!

Vasavi GS - 7 years, 5 months ago
Dominic Jobin
Dec 29, 2013

import math

k = 1
for i in range(200):
    k = math.sqrt(128*k)
    k = math.sqrt(27*k)
    k = math.sqrt(9*k)
print k

# Returns
# 18.0

C'est bête xD

Kenny Lau - 7 years, 5 months ago
Raj Magesh
Dec 29, 2013

Let the given expression shown be equal to x x . Then, from the pattern:

x = 9 27 128 x x = \sqrt{9\sqrt{27\sqrt{128x}}}

x = 3 3 3 × 8 2 x \Longrightarrow x = 3\sqrt{3\sqrt{3 \times 8\sqrt{2x}}}

x = 3 6 6 2 x \Longrightarrow x = 3\sqrt{6\sqrt{6\sqrt{2x}}}

Squaring both sides,

x 2 = 54 6 2 x \Longrightarrow x^{2} = 54\sqrt{6\sqrt{2x}}

Squaring again:

x 4 = 5 4 2 6 2 x \Longrightarrow x^{4} = 54^{2} \cdot 6\sqrt{2x}

x 8 = ( 2 2 3 6 ) 2 ( 2 3 ) 2 ( 2 x ) \Longrightarrow x^{8} = \left(2^{2} \cdot 3^{6}\right)^{2}\left(2 \cdot 3\right)^{2}(2x)

x 7 = 2 7 3 14 \Longrightarrow x^{7} = 2^{7} \cdot 3^{14}

x = 2 3 2 = 18 \Longrightarrow x = 2 \cdot 3^{2} = \boxed{18}

Matt Just
Jun 25, 2016

You can write the expression recursively:

a ( n + 1 ) = 9 27 128 a ( n ) a(n+1)=\sqrt{9\sqrt{27\sqrt{128 a(n)}}}

Which simplifies to

a ( n + 1 ) = 3 7 / 4 2 7 / 8 a ( n ) 1 / 8 a(n+1)=3^{7/4}2^{7/8}a(n)^{1/8}

If the sequence has a limit, it will be a fixed point of the recursion. To find the fixed points just solve

x = 3 7 / 4 2 7 / 8 x 1 / 8 x=3^{7/4}2^{7/8} x^{1/8}

There are two solutions, x = 0 x=0 and x = 18 x=18 .

x = 0 x=0 is a trivial solution, thus the limit must be 18 18 (assuming it exists).

Rahul Sreedhar
May 2, 2014

try generalizing and making a common element having cube or square then just commionsense

Marvin Mora
Mar 14, 2014

i love pizza

So do I :)

Wee Xian Bin - 6 years, 11 months ago
Shubham Poddar
Feb 27, 2014

we can do this by 2 methods.one of them is---

Let the value comes to be x.

now x=sqrt[9sqrt{27sqrt(128x)}]

squaring both the sides 3 times you will get---

x^7=3^14*2^7

x=3^2*2=18.

Akhil Akhi
Jan 21, 2014

9=3 * 3,27=3 * 3 * 3,128=2 * 2 * 2 * 2 * 2 let calculate all 3 * 2 * 3=18

Anthony Sazama
Jan 21, 2014

Guessed it right!

Alexandre Campos
Jan 21, 2014

x = 9 27 128 9 27 128... x=\sqrt{9\sqrt{27\sqrt{128\sqrt{9\sqrt{27\sqrt{128...}}}}}}

x 2 = 9 27 128 9 27 128... x^2=9\sqrt{27\sqrt{128\sqrt{9\sqrt{27\sqrt{128...}}}}}

x 4 = 81 27 128 9 27 128... x^4=81*27\sqrt{128\sqrt{9\sqrt{27\sqrt{128...}}}}

x 8 = 8 1 2 2 7 2 128 9 27 128... x^8=81^2*27^2*128\sqrt{9\sqrt{27\sqrt{128...}}}

x 8 = 8 1 2 2 7 2 128 x x^8=81^2*27^2*128*x

x = 18 x=18

Santhosh Kumar
Jan 20, 2014

let sqrt(9sqrt(27sqrt(128)))=x

then sqrt(9sqrt(27sqrt(128x)))=x

now on squaring both sides for three times we get

(81 27)^2 128=x^7

on solving we get x=18

let 9 27 128 9 27 128 . . . = x \sqrt{9\sqrt{27\sqrt{128\sqrt{9\sqrt{27\sqrt{128\sqrt{...}}}}}}}=x and then we get ( 9 2 27 ) 2 128 9 27 128 . . . = x 8 (9^2 27)^2 128 \sqrt{9\sqrt{27\sqrt{128\sqrt{...}}}}=x^8 ( 9 2 27 ) 2 128 x = x 8 (9^2 27)^2 128 x=x^8 ( 3 4 3 3 ) 2 128 x = x 8 (3^4 3^3)^2 128 x=x^8 3 14 2 7 = x 7 3^{14} 2^7 =x^7 3 2 2 = x 3^2 2 =x x = 18 x=18

Raven Herd
Jan 17, 2014

\sqrt{9sqrt{27sqrt{128sqrt x}}} = x. then, x^4 = [\sqrt{9sqrt{27sqrt{128sqrt x}}}]^4 x^4 = 81 27\sqrt{128} x^4 2 = [ 81 27\sqrt{128}]^2 x^8 = 6561 729 128 x = [6561 729*128]^8= 18 {if you don't understand it this way , just keep in mind that keep on squaring both the sides of the equation until all the numbers are out of the nested surd and then find the nth root of the final product , where 'n' is the exponent of the answer 'x'.]

Julio Lociks
Jan 12, 2014

First, we can observe that the first three nested surds are equal to

9 27 128 = 1 8 7 8 \sqrt{9 \, \sqrt{27 \, \sqrt{128}}} = \sqrt[8]{18^{7}}

So, our entire nested expression, let´s call it S , can be wrote as

S = 1 8 7 1 8 7 1 8 7 . . . 8 8 8 8 S = \sqrt[8]{18^{7} \, \sqrt[8]{18^{7} \, \sqrt[8]{18^{7} \, \sqrt[8]{...}}}}

Thus

S = 1 8 7 8 1 8 7 8 2 1 8 7 8 3 1 8 7 8 4 . . . S = 18^{\frac{7}{8}} \cdot 18^{\frac{7}{8^{2}}} \cdot 18^{\frac{7}{8^{3}}} \cdot 18^{\frac{7}{8^{4}}} \cdot ...

S = ( 1 8 7 / 8 ) 1 + ( 1 8 ) + ( 1 8 ) 2 + ( 1 8 ) 3 + . . . S = \left( 18^{7/8} \right)^{1 + \left( \frac{1}{8} \right) +\left( \frac{1}{8} \right)^{2} +\left( \frac{1}{8} \right)^{3} + {...}}

S = ( 1 8 7 / 8 ) 8 7 S = \left( 18^{7/8} \right)^{\frac{8}{7}}

S = 18 S = 18

Mirbaz Khan
Jan 10, 2014

take the given nested surds equal to y , then take power 8 on both sides we get y^8=(18)^7(y) or y^7=(18)^7 this gives y=18

Rohit Singh
Jan 9, 2014

what we can see is a pattern after every the under root things if we take it all equal to Y ,then we can get Y=3(SQ ROOT OF 6 AND INSIDE SQ ROOT OF 6 LIKE THAT) AFTER THAT SQUARE BOTH SIDE U WILL GET

Y SQ=9 * 6 * Y / 3

THEN Y=18

Nagabhushan S N
Jan 8, 2014

Y=/9/27/128y Y2=9/27/128y Y2/9=/27/128y (Y2/9)2=27/128y Y4/37=/128y Y8/314=128y Y7=27*97 Y=18

... É apenas uma questão de teoria , se levar em conta que o inicio até os pontinhos fica 3V^4 3^3.2^3V2.3V^4 3^3.2^3V2 ... ,podemos ver que os números que ficariam fora das raízes seriam aproximadamente 3.3.2 , visto que o 3 e o dois estão elevados a terceira e se repetem em dizima , então o numero aproximado seria 18 , bem não segui essa linha fiz de um jeito mais complicado , mas se esse sistema funcionar eu dou um ed avisando!

Attain k Gupta
Dec 29, 2013

let y= y= and squaring three times so y^7=18^7

Nice p r o b l e m problem

Ahmed Nabil - 7 years, 5 months ago

Log in to reply

@Ahmed Nabil You're welcome! Hope you enjoyed this problem:)

Wee Xian Bin - 6 years, 11 months ago

its super

Sethu Raman - 7 years, 4 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...