Infinity is lovely

Algebra Level 4

K = 5 + 5 5 + 5 5 + K= \large \sqrt{5 + \sqrt{5-\sqrt{5+\sqrt{5-\sqrt{5+\ldots}}}}}

If K K can be expressed in simplest form as a + b c \dfrac{a+\sqrt{b}}{c} , where a , b , c a,b,c are positive integers, find the value of a 2 + b 2 + c 2 a^2+b^2+c^2 .


The answer is 294.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

Another approach:

K = 5 + 5 5 + L = 5 5 + 5 K=\sqrt{5+\sqrt{5-\sqrt{5+\cdots}}} \\ L=\sqrt{5-\sqrt{5+\sqrt{5-\cdots}}}

Then K = 5 + L K=\sqrt{5+L} and L = 5 K L=\sqrt{5-K} . Square both equations: K 2 = 5 + L K^2=5+L and L 2 = 5 K L^2=5-K and subtract them: K 2 L 2 = K + L ( K + L ) ( K L ) = K + L K^2-L^2=K+L \implies (K+L)(K-L)=K+L . Since K + L 0 K+L \neq0 : K L = 1 L = K 1 K-L=1 \implies L=K-1 .

Finally substitute that in the first equation:

K 2 = 5 + K 1 K 2 K 4 = 0 K^2=5+K-1 \implies K^2-K-4=0

Using the quadratic formula we obtain, and with the fact that K > 0 K>0 :

K = 1 + 17 2 K=\dfrac{1+\sqrt{17}}{2}

Comparing we get a = 1 a=1 , b = 17 b=17 and c = 2 c=2 . Hence the answer is 1 2 + 1 7 2 + 2 2 = 294 1^2+17^2+2^2=\boxed{294} .

Nice solution,it avoids something like x^4...

Dave Day - 5 years, 10 months ago

Log in to reply

True, but if you use the "x^4 approach" you get to practice your skills in factorizing polynomials. Still, i love this solution

Michele Franzoni - 2 years, 1 month ago

I saw this method stack exchange and used it to great effect on two nested radical problems. Thank you, sir. :)

Kevin Mano - 5 years, 9 months ago

Nice solution buddy up upvoted it

Department 8 - 5 years, 10 months ago

Log in to reply

Thank you :D

Alan Enrique Ontiveros Salazar - 5 years, 10 months ago

I've definitely seen it before...

Satvik Golechha - 5 years, 9 months ago
Matías Bruna
Aug 14, 2015

Solution:

Umm......

See the answer comes as a + b c \frac{a+\sqrt{b}}{c} and you are asking a 2 + b 2 + c 2 a^{2}+b^{2}+c^{2} but in your solution , it says b = 17 b=\sqrt{17} but according to a + b c \frac{a+\sqrt{b}}{c} , b = 17 b=17 .

Please look over my problem.

Akshat Sharda - 5 years, 10 months ago

Log in to reply

Im really sorry, the real problem said "is at the form (a+b)/c" but brilliant edited this.

Matías Bruna - 5 years, 10 months ago

Log in to reply

Ok.........

Akshat Sharda - 5 years, 10 months ago

Ya i also confirmed it by wolfram alpha

Mohit Gupta - 5 years, 10 months ago

Log in to reply

Now i fixed this!, brilliant edited this a + b c \dfrac{a + b}c to this! a + b c \dfrac{a + \sqrt{b}}c im really sorry for the trouble, but brilliant did a bad-edition.

Matías Bruna - 5 years, 10 months ago

ok,we don't talk about the problem ,I wonder how u recognized 「(x²-x-4)(x²+x-5)」?I finally ask Wolfram.

Dave Day - 5 years, 10 months ago

Log in to reply

This is my method.

x 4 10 x 2 + x + 20 = 0 x^{4} - 10x^{2} + x + 20 = 0

4 x 4 40 x 2 + 4 x + 80 = 0 4x^{4} - 40x^{2} + 4x + 80 = 0

4 x 4 36 x 2 + 81 = 4 x 2 4 x + 1 4x^{4} - 36x^{2} + 81 = 4x^{2} - 4x + 1

( 2 x 2 9 ) 2 = ( 2 x 1 ) 2 (2x^{2} - 9)^{2} = (2x - 1)^{2}

( 2 x 2 9 ) 2 ( 2 x 1 ) 2 = 0 (2x^{2} - 9)^{2} - (2x - 1)^{2} = 0

( 2 x 2 + 2 x 10 ) ( 2 x 2 2 x 8 ) = 0 (2x^{2} + 2x - 10)(2x^{2} - 2x - 8) = 0

( x 2 + x 5 ) ( x 2 x 4 ) = 0 (x^{2} + x - 5)(x^{2} - x - 4) = 0

汶良 林 - 5 years, 10 months ago

This how i recognized the factors:- f a c t o r s o f t h e a b o v e p o l y n o m i a l c a n b e o f t h e f o r m : ( a k 2 + b k 1 + c ) ( a k 2 + b k 1 + c ) _ _ _ _ ( 1 ) N o w c o e f f i c i e n t o f k 4 i s 1 s o a = a = 1 a l s o c o e f f i c e i n t o f k 3 i s 0 s o b = 1 a n d b = 1 N o w s u b s t i t u t i n g a , b , a , b a n d e x p a n d i n g ( 1 ) w e g e t k 4 k 2 ( c + c + 1 ) + k ( c c ) + c c c o m p a r i n g i t w i t h t h e o r i g i n a l p o l y n o m i a l w e g e t c = 5 a n d c = 4 s o t h e f a c t o r s a r e ( k 2 + k 5 ) ( k 2 k 4 ) factors\quad of\quad the\quad above\quad polynomial\quad can\quad be\quad of\quad the\quad form:-\\ (a{ k }^{ 2 }+{ bk }^{ 1 }+c)({ a }^{ ' }{ k }^{ 2 }+{ b }^{ ' }{ k }^{ 1 }+{ c }^{ ' })\_ \_ \_ \_ (1)\\ Now\quad coefficient\quad of\quad { k }^{ 4 }\quad is\quad 1\\ so\quad a=a^{ ' }=1\quad also\quad coefficeint\\ of\quad { k }^{ 3 }\quad is\quad 0\quad so\quad b=1\quad and\quad b^{ ' }=-1\\ Now\quad substituting\quad a,b,a^{ ' },b'\quad and\quad expanding\quad (1)\\ we\quad get\\ { k }^{ 4 }-{ k }^{ 2 }(c+c'+1)+k(c-c')+cc'\\ comparing\quad it\quad with\quad the\quad original\quad polynomial\\ we\quad get\quad c=5\quad and\quad c'=4\\ so\quad the\quad factors\quad are\\ ({ k }^{ 2 }+k-5)({ k }^{ 2 }-k-4)

Rishi Sharma - 5 years, 10 months ago

Log in to reply

How do you know that b,b' = ±1 not ±2,±3,±4,... ???

Anuchit Thanasrisurbwong - 5 years, 10 months ago

Log in to reply

@Anuchit Thanasrisurbwong Rishi's got the right idea, but it can be a bit more involved.

First, the possible rational zeros don't produce any zeros, so we can see if there are 2 quadratics that fit the bill. The coefficient of the k 4 k^{4} term is 1, so that makes things a tad easier.

( k 2 + a k + b ) ( k 2 + c k + d ) = k 4 + ( a + c ) k 3 + ( a c + b + d ) k 2 + ( a d + b c ) k + b d (k^{2}+ak+b)(k^{2}+ck+d)=k^{4}+(a+c)k^{3}+(ac+b+d)k^{2}+(ad+bc)k+bd

From this, we can match coefficients and get 4 equations. If they can be solved, then this is possible.

1) a + c = 0 a+c=0

2) a c + b + d = 10 ac+b+d=-10

3) a d + b c = 1 ad+bc=1

4) b d = 20 bd=20

Trying to solve them (at least for me) yields:

1) c = a \Rightarrow c=-a

3) a ( d b ) = 1 d b = 1 a \Rightarrow a(d-b)=1 \Rightarrow d-b=\frac{1}{a}

For this to work 1 a \frac{1}{a} must be an integer, so a must be 1 or -1. Choosing either works (I chose 1)

1) a = 1 c = 1 a=1 \Rightarrow c=-1

3) d = b + 1 \Rightarrow d=b+1

4) b ( b + 1 ) = 20 b 2 + b 20 = 0 b = 4 , 5 \Rightarrow b(b+1)=20 \Rightarrow b^{2}+b-20=0 \Rightarrow b=4, -5

If b = 4 b=4 then d = 5 d=5 , but then equation 2 doesn't work. So:

4) b = 5 b=-5

3) d = 4 \Rightarrow d=-4

2) 1 ( 1 ) 4 5 = 10 1(-1)-4-5=-10 Check

Therefore, the assumption that a = 1 a=1 works and you are left with ( k 2 + k 5 ) ( k 2 k 4 ) (k^{2}+k-5)(k^{2}-k-4) .

Louis W - 5 years, 10 months ago

@Anuchit Thanasrisurbwong see @louis w's solution.. you can easily notice that two get the simplest possible valuse of the unknowns it is important to keep b and b' unity. even if you change the values you will get the same values but a little more complex.

Rishi Sharma - 5 years, 10 months ago
Lu Chee Ket
Oct 18, 2015

(K^2 - 5)^2 = 5 - K

K^4 - 10 K^2 + K + 20 = 0

K^4 + (u - 10) K^2 - u K^2 + K + 20 = 0

u^3 - 20 u^2 + 20 u - 1 = 0 is having 3 real roots but 1 simplest which is 1.

Therefore (K^2 - K - 4)(K^2 + K - 5) = 0

As we know that K = 2.56 approximately from the original expression,

K^2 - K - 4 = 0 is the one contains 2.56,

(K - 1/ 2)^2 = (1/ 2)^2 + 4 = 17/ 4

K = 1/ 2 +/- Sqrt (17) / 2 initially but not negative,

K = [1 + Sqrt (17)]/ 2 = 2.561552812808830274910704927987

1^2 + 2^2 + 17^2 = 294

William Isoroku
Aug 20, 2015

K 2 = 5 + 5 5 + 5 5 + . . . . { K }^{ 2 }=5+\sqrt { 5-\sqrt { 5+\sqrt { 5-\sqrt { 5+.... } } } }

K 2 5 = 5 5 + 5 5 + . . . . { K }^{ 2 }-5=\sqrt { 5-\sqrt { 5+\sqrt { 5-\sqrt { 5+.... } } } }

( K 2 5 ) 2 = 5 5 + 5 5 + . . . . = 5 K { ({ K }^{ 2 } }-5)^{ 2 }=5-\sqrt { 5+\sqrt { 5-\sqrt { 5+.... } } }=5-K

K 4 10 K 2 + 25 = 5 K K 4 10 K 2 + K + 20 = 0 { K }^{ 4 }-10{ K }^{ 2 }+25=5-K\rightarrow { K }^{ 4 }-{ 10K }^{ 2 }+K+20=0

K 4 10 K 2 + K + 20 = 0 ( K 2 K 4 ) ( K 2 + K 5 ) = 0 { K }^{ 4 }-{ 10K }^{ 2 }+K+20=0\rightarrow ({ K }^{ 2 }-K-4)({ K }^{ 2 }+K-5)=0

Using the quadratic formula, we get the roots:

1 ± 17 2 \frac { 1\pm \sqrt { 17 } }{ 2 }

1 ± 21 2 \frac { -1\pm \sqrt { 21 } }{ 2 }

We choose the root with all positive numbers.

Moderator note:

Both 1 + 17 2 \dfrac{-1+\sqrt{17}}2 and 1 + 21 2 \dfrac{-1+\sqrt{21}}2 are positive numbers, how do you know which one is the right answer?

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...