Ink on Sequences #2

Calculus Level 5

For every positive integer n n , let a sequence { a n } \{a_n\} satisfy:

{ a 2 n + 1 = a 2 n 1 + 2 n 1 a 2 n + 2 = n a 2 n \large \begin{cases} a_{2n+1}=a_{2n-1}+2n-1 \\ a_{2n+2}=na_{2n} \end{cases}

Find the value of lim n 12 a 2 n a 2 n + 9 a 6 ( n + 1 ) ! \displaystyle \lim_{n\rightarrow\infty}\frac{12a_{2n}a_{2n+9}}{a_6\cdot(n+1)!} .


This problem is a part of <Inconsequences!> series .


The answer is 6.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Boi (보이)
Jun 23, 2017

From the first condition, we see that:

k = 1 n 1 ( a 2 k + 1 a 2 k 1 ) = k = 1 n 1 ( 2 k 1 ) a 2 n 1 a 1 = n ( n 1 ) ( n 1 ) a 2 n 1 = n 2 + p n + q \begin{aligned} &\sum_{k=1}^{n-1} (a_{2k+1}-a_{2k-1})=\sum_{k=1}^{n-1} (2k-1) \\ &a_{2n-1}-a_{1}=n(n-1)-(n-1) \\ &\therefore~a_{2n-1}=n^2+pn+q \end{aligned}

And from the second condition, we see that:

k = 1 n 1 a 2 k + 2 a 2 k = k = 1 n 1 k a 2 n a 2 = ( n 1 ) ! a 2 n = a 2 ( n 1 ) ! \begin{aligned} &\prod_{k=1}^{n-1} \frac{a_{2k+2}}{a_{2k}}=\prod_{k=1}^{n-1} k \\ &\frac{a_{2n}}{a_2}=(n-1)! \\ &\therefore~a_{2n}=a_2\cdot(n-1)! \end{aligned}

Also, a 6 = 2 a 4 = 2 a 2 a_6=2a_4=2a_2 .

Punch those into the expression we're trying to find a value of.

lim n 12 a 2 n a 2 n + 9 a 6 ( n + 1 ) ! = lim n 12 a 2 ( n 1 ) ! { ( n + 5 ) 2 + p ( n + 5 ) + q } 2 a 2 ( n + 1 ) ! = lim n 6 ( n 2 + r n + s ) n ( n + 1 ) = 6 \begin{aligned} &\lim_{n\rightarrow\infty}\frac{12a_{2n}a_{2n+9}}{a_6\cdot(n+1)!} \\ &=\lim_{n\rightarrow\infty}\frac{12a_2\cdot(n-1)!\cdot\{(n+5)^2+p(n+5)+q\}}{2a_2\cdot(n+1)!} \\ &=\lim_{n\rightarrow\infty}\frac{6(n^2+rn+s)}{n(n+1)} \\ &=\boxed{6} \end{aligned}

Are these problems original?

Keshav Tiwari - 3 years, 11 months ago

Log in to reply

I made the problems, if you're talking about this <Inconsequences!> series.

Boi (보이) - 3 years, 11 months ago

Log in to reply

Nice Work!

Keshav Tiwari - 3 years, 11 months ago

Log in to reply

@Keshav Tiwari Awh, thank you!

Boi (보이) - 3 years, 11 months ago

Whats level 5 about this ques

Aakash Khandelwal - 3 years, 11 months ago

Log in to reply

¯\_(ツ)_/¯ have no idea, man

Boi (보이) - 3 years, 11 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...