Inspired By Comrade Otto

Algebra Level 4

f ( 0 ) = 2 0 f ( 1 ) = 2 1 f ( 2 ) = 2 2 f ( 3 ) = 2 3 f ( 4 ) = 2 4 f ( 5 ) = 2 5 f ( 6 ) = 2 6 \begin{array} {r l l } f(0) & =& 2^0 \\ f(1) &=& 2^1 \\ f(2) &=& 2^2 \\ f(3) &=& 2^3 \\ f(4) &=& 2^4 \\ f (5) &=& 2^5 \\ f (6) &=& 2 ^ 6 \end{array}

If f ( x ) f(x) is a degree 6 polynomial satisfying the above values, then what is the value of f ( 13 ) f(13) ?

2 14 2^{14} 2 12 2^{12} 2 13 2^{13} None of the rest

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Aditya Kumar
Mar 1, 2016

We define: f ( x ) = i = 0 6 ( x k ) \displaystyle f\left( x \right) =\sum _{ i=0 }^{ 6 }{ \left( \begin{matrix} x \\ k \end{matrix} \right) } .

Now, for 0 x 6 0\le x\le 6 . we get f ( x ) = 2 x f\left( x \right) ={ 2 }^{ x } .

Now, f ( 13 ) = i = 0 6 ( 13 i ) \displaystyle f\left( 13 \right) =\sum _{ i=0 }^{ 6 }{ \left( \begin{matrix} 13 \\ i \end{matrix} \right) }

On interpreting the summation accordingly, we get:

f ( 13 ) = 1 2 i = 0 13 ( 13 i ) f\left( 13 \right) =\frac { 1 }{ 2 } \sum _{ i=0 }^{ 13 }{ \left( \begin{matrix} 13 \\ i \end{matrix} \right) }

Therefore, f ( 13 ) = 2 12 \boxed{f\left( 13 \right) ={ 2 }^{ 12 }}

Can someone help me f(3)-1=7 but shouldn't it be divisible by 3 as the constant term of polynomial is 1

abhijit mohan - 5 years, 3 months ago

Log in to reply

You are making the assumption that the coefficients of the polynomial are integers, which they need not be. E.g. For f ( x ) = 1 3 x + 1 f(x) = \frac{1}{3} x + 1 , clearly f ( 3 ) f ( 0 ) f(3) - f(0) is not divisible by 3.

Calvin Lin Staff - 5 years, 3 months ago

Log in to reply

Thank you for your explanation

abhijit mohan - 5 years, 3 months ago

Would u please elaborate , that how did u reach the f(x)

Mehul Chaturvedi - 5 years, 3 months ago

Log in to reply

See the examples

Aditya Kumar - 5 years, 3 months ago

Plz explain it

Pranav Bansal - 5 years, 3 months ago

Log in to reply

Explain what? Which step?

Aditya Kumar - 5 years, 3 months ago

Log in to reply

If u plz dont mind. Can u please explain how we write the 1st step .

Pranav Bansal - 5 years, 3 months ago

Log in to reply

@Pranav Bansal See the examples . It is an identity of binomial theorem.

Aditya Kumar - 5 years, 3 months ago

Log in to reply

@Aditya Kumar It is in class 11th ?

Chirayu Bhardwaj - 5 years, 3 months ago

Log in to reply

@Chirayu Bhardwaj Yes. It is a basic identity.

Aditya Kumar - 5 years, 3 months ago

How do you get the second summation

Yohanes Alfredo - 5 years, 3 months ago

Log in to reply

Take x = 13 x=13

Aditya Kumar - 5 years, 3 months ago
William Chau
Mar 9, 2016

We use the method of differences .

Since p(x) is 6th degree, the sixth differences D^6 p(x) must be the same number, namely 1 (see below).

1 2 4 8 16 32 64

1 2 4 8 16 32

1 2 4 8 16

1 2 4 8

1 2 4

1 2

1

By calculus of finite differences, the polynomial is p(13) = (I+D)^13 p(0) = p(0)+C(13, 1) Dp(0)+C(13, 2) D^2p(0)+...+C(13, 12)*D^12p(0)+D^13p(0) = 1+C(13, 1)+C(13, 2)+C(13, 3)+...+C(13, 6) = (1+1)^13/2 = 4096.

In general, p(x) = 1+C(x, 1)+C(x, 2)+...+C(x, 6) = 1+x+x(x-1)/2+x(x-1)(x-2)/6+x(x-1)(x-2)(x-3)/24+x(x-1)(x-2)(x-3)(x-4)/120+x(x-1)(x-2)(x-3)(x-4)(x-5)/720.

So what is the polynomial.? Obviously, the first term is 1. I suppose the above would lead to a system of 6 linear equations involving the 6 coefficients which could be solved by matrix algebra

Sundar R - 5 years, 3 months ago

Log in to reply

The point is that we don't need to find the exact polynomial (if we're only interested in the next value). Check out the wiki page method of differences and learn from it!

Calvin Lin Staff - 5 years, 3 months ago

Log in to reply

We define the polynomial to be a x 6 + b x 5 + c x 4 + d x 3 + e x 2 + f x + g ax^6+bx^5+cx^4+dx^3+ex^2+fx+g Through plugging in the values 0 through 6, we have a system: { a 0 6 + b 0 5 + c 0 4 + d 0 3 + e 0 2 + f 0 + g = 1 a 1 6 + b 1 5 + c 1 4 + d 1 3 + e 1 2 + f 1 + g = 2 a 2 6 + b 2 5 + c 2 4 + d 2 3 + e 2 2 + f 2 + g = 4 a 3 6 + b 3 5 + c 3 4 + d 3 3 + e 3 2 + f 3 + g = 8 a 4 6 + b 4 5 + c 4 4 + d 4 3 + e 4 2 + f 4 + g = 16 a 5 6 + b 5 5 + c 5 4 + d 5 3 + e 5 2 + f 5 + g = 32 a 6 6 + b 6 5 + c 6 4 + d 6 3 + e 6 2 + f 6 + g = 64 \begin{cases} a0^6+b0^5+c0^4+d0^3+e0^2+f0+g &= 1\\ a1^6+b1^5+c1^4+d1^3+e1^2+f1+g &= 2\\ a2^6+b2^5+c2^4+d2^3+e2^2+f2+g &= 4\\ a3^6+b3^5+c3^4+d3^3+e3^2+f3+g &= 8\\ a4^6+b4^5+c4^4+d4^3+e4^2+f4+g &= 16\\ a5^6+b5^5+c5^4+d5^3+e5^2+f5+g &= 32\\ a6^6+b6^5+c6^4+d6^3+e6^2+f6+g &= 64 \end{cases}

Rewriting yields:

{ 0 6 a + 0 5 b + 0 4 c + 0 3 d + 0 2 e + 0 f + g = 1 1 6 a + 1 5 b + 1 4 c + 1 3 d + 1 2 e + 1 f + g = 2 2 6 a + 2 5 b + 2 4 c + 2 3 d + 2 2 e + 2 f + g = 4 3 6 a + 3 5 b + 3 4 c + 3 3 d + 3 2 e + 3 f + g = 8 4 6 a + 4 5 b + 4 4 c + 4 3 d + 4 2 e + 4 f + g = 16 5 6 a + 5 5 b + 5 4 c + 5 3 d + 5 2 e + 5 f + g = 32 6 6 a + 6 5 b + 6 4 c + 6 3 d + 6 2 e + 6 f + g = 64 \begin{cases} 0^6a+0^5b+0^4c+0^3d+0^2e+0f+g &= 1\\ 1^6a+1^5b+1^4c+1^3d+1^2e+1f+g &= 2\\ 2^6a+2^5b+2^4c+2^3d+2^2e+2f+g &= 4\\ 3^6a+3^5b+3^4c+3^3d+3^2e+3f+g &= 8\\ 4^6a+4^5b+4^4c+4^3d+4^2e+4f+g &= 16\\ 5^6a+5^5b+5^4c+5^3d+5^2e+5f+g &= 32\\ 6^6a+6^5b+6^4c+6^3d+6^2e+6f+g &= 64 \end{cases} Simplifying and placing the values and putting them in a matrix

[ 0 0 0 0 0 0 1 1 1 1 1 1 1 1 64 32 16 8 4 2 1 729 243 81 27 9 3 1 4096 1024 256 64 16 4 1 15625 3125 625 125 25 5 1 46656 7776 1296 216 36 6 1 ] [ a b c d e f g ] = \begin{bmatrix} 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 64 & 32 & 16 & 8 & 4 & 2 & 1 \\ 729 & 243 & 81 & 27 & 9 & 3 & 1 \\ 4096 & 1024 & 256 & 64 & 16 & 4 & 1 \\ 15625 & 3125 & 625 & 125 & 25 & 5 & 1 \\ 46656 & 7776 & 1296 & 216 & 36 & 6 & 1 \end{bmatrix} \begin{bmatrix} a \\ b \\ c\\ d\\ e\\ f\\ g \end{bmatrix}= [ 1 2 4 8 16 32 64 ] \begin{bmatrix} 1 \\ 2 \\ 4 \\ 8 \\ 16 \\ 32 \\ 64 \end{bmatrix}

[ a b c d e f g ] = \begin{bmatrix} a \\ b \\ c \\ d \\ e \\ f \\ g \end{bmatrix}= [ 0 0 0 0 0 0 1 1 1 1 1 1 1 1 64 32 16 8 4 2 1 729 243 81 27 9 3 1 4096 1024 256 64 16 4 1 15625 3125 625 125 25 5 1 46656 7776 1296 216 36 6 1 ] 1 \begin{bmatrix} 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 64 & 32 & 16 & 8 & 4 & 2 & 1 \\ 729 & 243 & 81 & 27 & 9 & 3 & 1 \\ 4096 & 1024 & 256 & 64 & 16 & 4 & 1 \\ 15625 & 3125 & 625 & 125 & 25 & 5 & 1 \\ 46656 & 7776 & 1296 & 216 & 36 & 6 & 1 \end{bmatrix}^{-1} [ 1 2 4 8 16 32 64 ] \begin{bmatrix} 1 \\ 2 \\ 4 \\ 8 \\ 16 \\ 32 \\ 64 \end{bmatrix}

[ a b c d e f g ] = [ 0.001389 0.00833 0.020833 0.02778 0.020833 0.00833 0.001389 0.02917 0.166667 0.39583 0.5 0.35417 0.133333 0.02083 0.243056 1.29167 2.854167 3.36111 2.229167 0.79167 0.118056 1.02083 4.833333 9.60417 10.33333 6.39583 2.166667 0.3125 2.255556 8.7 14.625 14.1111 8.25 2.7 0.380556 2.45 6 7.5 6.666667 3.75 1.2 0.16667 1 0 0 0 0 0 0 ] [ 1 2 4 8 16 32 64 ] \begin{bmatrix} a \\ b \\ c\\ d\\ e\\ f\\ g \end{bmatrix}= \begin{bmatrix} 0.001389 & -0.00833 & 0.020833 & -0.02778 & 0.020833 & -0.00833 & 0.001389 \\ -0.02917 & 0.166667 & -0.39583 & 0.5 & -0.35417 & 0.133333 & -0.02083 \\ 0.243056 & -1.29167 & 2.854167 & -3.36111 & 2.229167 & -0.79167 & 0.118056 \\ -1.02083 & 4.833333 & -9.60417 & 10.33333 & -6.39583 & 2.166667 & -0.3125 \\ 2.255556 & -8.7 & 14.625 & -14.1111 & 8.25 & -2.7 & 0.380556 \\ -2.45 & 6 & -7.5 & 6.666667 & -3.75 & 1.2 & -0.16667 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 4 \\ 8 \\ 16 \\ 32 \\ 64 \end{bmatrix} [ a b c d e f g ] = [ 0.001389 0.0125 0.076389 0.10417 0.422222 0.616667 1 ] \begin{bmatrix} a \\ b \\ c\\ d\\ e\\ f\\ g \end{bmatrix}= \begin{bmatrix} 0.001389 \\ -0.0125 \\ 0.076389 \\ -0.10417 \\ 0.422222 \\ 0.616667 \\ 1 \end{bmatrix} We now have the coefficients to the polynomial: 0.001389 x 6 + 0.0125 x 5 + 0.076389 x 4 + 0.10417 x 3 + 0.422222 x 2 + 0.616667 x + 1 0.001389x^6+-0.0125x^5+0.076389x^4+-0.10417x^3+0.422222x^2+0.616667x+1 Substituting in 13: 0.001389 ( 1 3 6 ) 0.0125 ( 1 3 5 ) + 0.076389 ( 1 3 4 ) 0.10417 ( 1 3 3 ) + 0.422222 ( 1 3 2 ) + 0.616667 ( 13 ) + 1 = 4096 0.001389(13^6)-0.0125(13^5)+0.076389(13^4)-0.10417(13^3)+0.422222(13^2)+0.616667(13)+1=4096 , which is 2 13 2^{13}

Kevin Luo - 5 years ago

Log in to reply

@Kevin Luo the last number is incorrect. 4096=2^12

fahim saikat - 4 years, 5 months ago

This is how did it

Jerry McKenzie - 4 years, 7 months ago

I used the difference method too with 1s on the 6th difference layer, then constructed each of the other levels by addition. Unfortunately I made arithmetic and reading errors so failed to get 4096. Your analytic metho d is much better, I just didn't know it.

John Winkelman - 3 years, 4 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...