Inspired by Ikkyu San

Calculus Level 4

1 2 3 1 ! + 2 ! + 3 ! + 2 3 4 2 ! + 3 ! + 4 ! + 3 4 5 3 ! + 4 ! + 5 ! + = ? \large\dfrac { 1\cdot 2\cdot 3 }{ 1!+2!+3! } +\dfrac { 2\cdot 3\cdot 4 }{ 2!+3!+4! } +\dfrac { 3\cdot 4\cdot 5 }{ 3!+4!+5! }+\cdots = \, ?

Notation :
! ! denotes the factorial notation. For example, 8 ! = 1 × 2 × 3 × × 8 8! = 1\times2\times3\times\cdots\times8 .


The answer is 2.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

S = 1 2 3 1 ! + 2 ! + 3 ! + 2 3 4 2 ! + 3 ! + 4 ! + 3 4 5 3 ! + 4 ! + 5 ! + = n = 1 n ( n + 1 ) ( n + 2 ) n ! + ( n + 1 ) ! + ( n + 2 ) ! = n = 1 n ( n + 1 ) ( n + 2 ) n ! ( n + 2 ) 2 = n = 1 n + 1 ( n + 2 ) ( n 1 ) ! = n = 0 n + 2 ( n + 3 ) n ! \begin{aligned} S & = \frac{1\cdot2\cdot3}{1!+2!+3!} + \frac{2\cdot3\cdot4}{2!+3!+4!} + \frac{3\cdot4\cdot5}{3!+4!+5!} + \cdots \\ & = \sum_{n=1}^\infty \frac{n(n+1)(n+2)}{n!+(n+1)!+(n+2)!} \\ & = \sum_{n=1}^\infty \frac{n(n+1)(n+2)}{n!(n+2)^2} \\ & = \sum_{n=1}^\infty \frac{n+1}{(n+2)(n-1)!} \\ & = \color{#3D99F6}{\sum_{n=0}^\infty \frac{n+2}{(n+3)n!}} \end{aligned}

Now consider the Maclaurin series of e x e^x ,

n = 0 x n n ! = e x n = 0 x n + 2 n ! = x 2 e x Integrate both sides n = 0 x n + 3 ( n + 3 ) n ! = x 2 e x 2 x e x + 2 e x 2 Get from putting x = 0 , see Note ; × 1 x both sides n = 0 x n + 2 ( n + 3 ) n ! = x e x 2 e x + 2 e x x 2 x Differentiate both sides n = 0 ( n + 2 ) x n + 1 ( n + 3 ) n ! = e x + x e x 2 e x + 2 e x x 2 e x x 2 + 2 x 2 Putting x = 1 n = 0 n + 2 ( n + 3 ) n ! = e + e 2 e + 2 e 2 e + 2 S = 2 \begin{aligned} \sum_{n=0}^\infty \frac{x^n}{n!} & = e^x \\ \sum_{n=0}^\infty \frac{x^{n+2}}{n!} & = x^2e^x \quad \quad \small \color{#3D99F6}{\text{Integrate both sides}} \\ \sum_{n=0}^\infty \frac{x^{n+3}}{(n+3)n!} & = x^2e^x - 2xe^x + 2e^x \color{#D61F06}{- 2} \quad \quad \small \color{#D61F06}{\text{Get from putting }x=0 \text{, see Note}};\quad \color{#3D99F6}{\times \frac{1}{x} \text{ both sides}} \\ \sum_{n=0}^\infty \frac{x^{n+2}}{(n+3)n!} & = xe^x - 2e^x + \frac{2e^x}{x} - \frac{2}{x} \quad \quad \small \color{#3D99F6}{\text{Differentiate both sides}} \\ \sum_{n=0}^\infty \frac{(n+2)x^{n+1}}{(n+3)n!} & = e^x + xe^x - 2e^x + \frac{2e^x}{x} - \frac{2e^x}{x^2} + \frac{2}{x^2} \quad \quad \small \color{#3D99F6}{\text{Putting }x=1} \\ \color{#3D99F6} {\sum_{n=0}^\infty \frac{n+2}{(n+3)n!}} & = e + e - 2e + 2e - 2e + 2 \\ \implies \color{#3D99F6}{S} & = \boxed{2} \end{aligned}


Note: \color{#D61F06}{\text{Note:}}

\begin{aligned} \sum_{n=0}^\infty \frac{x^{n+3}}{(n+3)n!} & = x^2e^x - 2xe^x + 2e^x + \color{#D61F06}{c} \quad \quad \small \color{#D61F06}{c \text{ is the constant of integration; by putting }x=0,} \\ \implies \sum_{n=0}^\infty \frac{\color{#D61F06}{0} ^{n+3}}{(n+3)n!} & = \color{#D61F06}{0}^2e^\color{#D61F06}{0} - 2(\color{#D61F06}{0})e^\color{#D61F06}{0} + 2e^\color{#D61F06}{0} + \color{#D61F06}{c} \\ 0 & = 2 + \color{#D61F06}{c} \\ \implies \color{#D61F06}{c} & = \color{#D61F06}{-2} \end{aligned}

Brilliant solution. Sir, your solutions always inspire me to do more. I just wanted to ask how did you got 2 -2 after integration by putting x = 0 x=0 ? @Chew-Seong Cheong

Akshay Yadav - 5 years, 1 month ago

Log in to reply

Thanks for liking my solutions. I have added a note to explain it.

Chew-Seong Cheong - 5 years, 1 month ago

Log in to reply

Is there any particular reason for choosing x = 0 x=0 for substitution?

Akshay Yadav - 5 years, 1 month ago

Log in to reply

@Akshay Yadav There is one mistake in the solution,

n = 0 x n n ! = e x \displaystyle \sum_{n=0}^{\infty} \frac{x^n}{n!}=e^x instead of what is mentioned in the solution.

Akshay Yadav - 5 years, 1 month ago

Log in to reply

@Akshay Yadav Thanks. I have changed it.

Chew-Seong Cheong - 5 years, 1 month ago

@Akshay Yadav It is the easiest way to solve for c c . Well you can use x = 1 x=1 or any other value.

Chew-Seong Cheong - 5 years, 1 month ago

Let us denote the general term by T n T_{n} .

Then we have

T n = n ( n + 1 ) / n ! ( n + 2 ) T_n = n(n+1)/n! (n+2) .

Adding and removing 2 from numerator ,

T n = n 1 / n ! + 2 / n ! ( n + 2 ) T_n = n-1/n! + 2/n!(n+2) .

Therefore we generate last expression before telescoping.

T n = ( 1 / ( n 1 ) ! 1 / n ! ) + 2 ( 1 / ( n + 1 ) ! 1 / ( n + 2 ) ! ) T_n = (1/(n-1)! - 1/n!) + 2( 1/(n+1)! - 1/(n+2)!)

Thus after taking sum from n = 1 to \infty Answer is 2

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...