( a , b ) → ∞ lim ∫ 0 a ∫ 0 b sin ( 2 π x 2 + 2 π y 2 ) d y d x
Evaluate this limit, rounded to three significant figures.
If you come to the conclusion that this limit fails to exist, enter 666.
Formal Definition : ( a , b ) → ∞ lim f ( a , b ) = L means that for every ϵ > 0 there exists an N such that ∣ f ( a , b ) − L ∣ < ϵ whenever a > N and b > N .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Yes, exactly! (+1) The Dirichlet Kernel is key.
Log in to reply
Where is the working for Dirichlet Kernel? All I see is Fresnel integral.
Log in to reply
The two are closely related, of course.
Log in to reply
@Otto Bretscher – How so? I don't see any word "Fresnel" in wikipedia: Dirichlet kernel .
Log in to reply
@Pi Han Goh – There is a way to derive the limits of the Fresnel integral from the Dirichlet kernel (if you don't want to use complex contours); I will find you a reference when I get around to it. (School is back in session now, after Spring Break, and I have less time to "play.")
So then, how is it that the insipiration problem has a diverging integral?
wait... I don't understand. but what's wrong with this approach?
∫ 0 ∞ ∫ 0 ∞ sin ( 2 π ( x 2 + y 2 ) ) d x d y = ∫ 0 4 π ∫ 0 ∞ sin ( 2 π r 2 ) r d r d θ = 4 π ∫ 0 ∞ sin ( 2 π r 2 ) r d r = does not exist
Problem Loading...
Note Loading...
Set Loading...
a s ∫ 0 ∞ ∫ 0 ∞ sin ( 2 π x 2 ) cos ( 2 π y 2 ) d y d x = ∫ 0 ∞ ∫ 0 ∞ cos ( 2 π x 2 ) sin ( 2 π y 2 ) d y d x I = ∫ 0 ∞ ∫ 0 ∞ sin ( 2 π x 2 + 2 π y 2 ) d y d x = 2 ∫ 0 ∞ ∫ 0 ∞ sin ( 2 π x 2 ) cos ( 2 π y 2 ) d y d x = 2 { ∫ 0 ∞ cos ( 2 π y 2 ) d y } { ∫ 0 ∞ sin ( 2 π x 2 ) d x } n o w , ∫ 0 ∞ cos ( 2 π y 2 ) d y = ∫ 0 ∞ 2 π u cos u d z ( i f 2 π y 2 = u ) = 2 1 & ∫ 0 ∞ sin ( 2 π x 2 ) d x = ∫ 0 ∞ 2 π v sin v d z ( i f 2 π x 2 = v ) = 2 1 ∴ I = 2 ( 2 1 ) ( 2 1 ) = 0 . 5