Inspired by Jose Sacramento

Calculus Level 5

lim ( a , b ) 0 a 0 b sin ( π x 2 2 + π y 2 2 ) d y d x \lim_{(a,b)\to \infty}\int_{0}^{a}\int_{0}^{b}\sin\left(\frac{\pi x^2}{2}+\frac{\pi y^2}{2}\right)\, dy\; dx

Evaluate this limit, rounded to three significant figures.

If you come to the conclusion that this limit fails to exist, enter 666.

Formal Definition : lim ( a , b ) f ( a , b ) = L \displaystyle \lim_{(a,b)\to\infty}f(a,b)=L means that for every ϵ > 0 \epsilon>0 there exists an N N such that f ( a , b ) L < ϵ |f(a,b)-L|<\epsilon whenever a > N a>N and b > N b>N .


Inspiration


The answer is 0.5.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Ayush Verma
Mar 20, 2016

a s 0 0 sin ( π x 2 2 ) cos ( π y 2 2 ) d y d x = 0 0 cos ( π x 2 2 ) sin ( π y 2 2 ) d y d x I = 0 0 sin ( π x 2 2 + π y 2 2 ) d y d x = 2 0 0 sin ( π x 2 2 ) cos ( π y 2 2 ) d y d x = 2 { 0 cos ( π y 2 2 ) d y } { 0 sin ( π x 2 2 ) d x } n o w , 0 cos ( π y 2 2 ) d y = 0 cos u 2 π u d z ( i f π y 2 2 = u ) = 1 2 & 0 sin ( π x 2 2 ) d x = 0 sin v 2 π v d z ( i f π x 2 2 = v ) = 1 2 I = 2 ( 1 2 ) ( 1 2 ) = 0.5 as\quad \int _{ 0 }^{ \infty }{ \int _{ 0 }^{ \infty }{ \sin { \left( \cfrac { \pi { x }^{ 2 } }{ 2 } \right) } \cos { \left( \cfrac { \pi y^{ 2 } }{ 2 } \right) } dydx } } =\int _{ 0 }^{ \infty }{ \int _{ 0 }^{ \infty }{ \cos { \left( \cfrac { \pi { x }^{ 2 } }{ 2 } \right) } \sin { \left( \cfrac { \pi y^{ 2 } }{ 2 } \right) } dydx } } \\ \\ I=\int _{ 0 }^{ \infty }{ \int _{ 0 }^{ \infty }{ \sin { \left( \cfrac { \pi { x }^{ 2 } }{ 2 } +\cfrac { \pi { y }^{ 2 } }{ 2 } \right) } dydx } } =2\int _{ 0 }^{ \infty }{ \int _{ 0 }^{ \infty }{ \sin { \left( \cfrac { \pi { x }^{ 2 } }{ 2 } \right) } \cos { \left( \cfrac { \pi y^{ 2 } }{ 2 } \right) } dydx } } \\ \\ =2\left\{ \int _{ 0 }^{ \infty }{ \cos { \left( \cfrac { \pi y^{ 2 } }{ 2 } \right) } dy } \right\} \left\{ \int _{ 0 }^{ \infty }{ \sin { \left( \cfrac { \pi { x }^{ 2 } }{ 2 } \right) } dx } \right\} \\ \\ now,\quad \int _{ 0 }^{ \infty }{ \cos { \left( \cfrac { \pi y^{ 2 } }{ 2 } \right) } dy } =\int _{ 0 }^{ \infty }{ \cfrac { \cos { u } }{ \sqrt { 2\pi u } } dz } \quad \left( if\cfrac { \pi y^{ 2 } }{ 2 } =u\quad \right) \\ \\ =\cfrac { 1 }{ 2 } \\ \\ \\ \& \int _{ 0 }^{ \infty }{ \sin { \left( \cfrac { \pi { x }^{ 2 } }{ 2 } \right) } dx } =\int _{ 0 }^{ \infty }{ \cfrac { \sin { v } }{ \sqrt { 2\pi v } } dz } \quad \left( if\cfrac { \pi x^{ 2 } }{ 2 } =v\quad \right) \\ \\ =\cfrac { 1 }{ 2 } \\ \\ \therefore \quad I=2\left( \cfrac { 1 }{ 2 } \right) \left( \cfrac { 1 }{ 2 } \right) =0.5

Yes, exactly! (+1) The Dirichlet Kernel is key.

Otto Bretscher - 5 years, 2 months ago

Log in to reply

Where is the working for Dirichlet Kernel? All I see is Fresnel integral.

Pi Han Goh - 5 years, 2 months ago

Log in to reply

The two are closely related, of course.

Otto Bretscher - 5 years, 2 months ago

Log in to reply

@Otto Bretscher How so? I don't see any word "Fresnel" in wikipedia: Dirichlet kernel .

Pi Han Goh - 5 years, 2 months ago

Log in to reply

@Pi Han Goh There is a way to derive the limits of the Fresnel integral from the Dirichlet kernel (if you don't want to use complex contours); I will find you a reference when I get around to it. (School is back in session now, after Spring Break, and I have less time to "play.")

Otto Bretscher - 5 years, 2 months ago

So then, how is it that the insipiration problem has a diverging integral?

A Former Brilliant Member - 5 years, 2 months ago

wait... I don't understand. but what's wrong with this approach?

0 0 sin ( π 2 ( x 2 + y 2 ) ) d x d y = 0 π 4 0 sin ( π r 2 2 ) r d r d θ = π 4 0 sin ( π r 2 2 ) r d r = does not exist \int_0^\infty \int_0^\infty \sin\left(\frac{\pi}{2}(x^2+y^2)\right)\,dx\,dy=\int_0^\frac{\pi}{4} \int_0^\infty \sin\left(\frac{\pi r^2}{2}\right)r\,dr\,d\theta=\frac{\pi}{4} \int_0^\infty \sin\left(\frac{\pi r^2}{2}\right)r\,dr=\text{does not exist}

Ruofeng Liu - 1 year, 6 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...