Inspired by Karthik Sharma

Calculus Level 5

I = 0 x 4 ( 1 + x 4 ) 2 d x \large I = \int_{0}^{\infty} \dfrac{x^{4}}{(1+x^{4})^{2}} \, dx

If the value of the integral above is of the form π b c \dfrac{\pi}{b\sqrt{c}} , where b b , c c are integers and c c is square-free, find the value of 10 b + c 10b+c .


This is my original problem.


The answer is 82.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

5 solutions

I = 0 x 4 ( 1 + x 4 ) 2 d x Let x = tan 1 2 θ d x = 1 2 tan 1 2 θ sec 2 θ d θ = 0 π 2 tan 2 θ tan 1 2 θ sec 2 θ 2 ( sec 2 θ ) 2 d θ = 1 2 0 π 2 tan 3 2 θ sec 2 θ d θ = 1 2 0 π 2 sin 3 2 θ cos 1 2 θ d θ 0 π 2 sin x θ cos y θ d θ = 1 2 B ( 1 2 ( x + 1 ) , 1 2 ( y + 1 ) ) = 1 4 B ( 5 4 , 3 4 ) B ( x , y ) = Γ ( x ) Γ ( y ) Γ ( x + y ) = Γ ( 5 4 ) Γ ( 3 4 ) 4 Γ ( 5 4 + 3 4 ) Γ ( 1 + x ) = x Γ ( x ) = 1 4 Γ ( 1 4 ) Γ ( 3 4 ) 4 Γ ( 2 ) Γ ( n ) = ( n 1 ) ! = Γ ( 1 4 ) Γ ( 3 4 ) 16 ( 1 ) Γ ( x ) Γ ( 1 x ) = π sin ( π x ) , x = 3 4 = 2 π 16 = π 8 2 \begin{array} {rll} I & = \displaystyle \int_0^\infty \frac{x^4}{(1+x^4)^2} dx & \small \color{#3D99F6}{\text{Let } x = \tan^{\frac{1}{2}} \theta \quad \Rightarrow dx = \frac{1}{2} \tan^{-\frac{1}{2}} \theta \sec^2 \theta \space d\theta} \\ & = \displaystyle \int_0^{\frac{\pi}{2}} \frac{\tan^2 \theta\tan ^{-\frac{1}{2}} \theta \sec^2 \theta }{2(\sec^2 \theta)^2} d \theta \\ & = \displaystyle \frac{1}{2} \int_0^{\frac{\pi}{2}} \frac{\tan^{\frac{3}{2}} \theta}{\sec^2 \theta} d \theta \\ & = \displaystyle \frac{1}{2} \int_0^{\frac{\pi}{2}} \sin^{\frac{3}{2}} \theta \cos^{\frac{1}{2}} \theta d \theta & \small \color{#3D99F6} { \displaystyle \int_0^{\frac{\pi}{2}} \sin^{x} \theta \cos^{y} \theta d \theta = \frac{1}{2} B \left(\frac{1}{2}(x+1), \frac{1}{2}(y+1) \right)} \\ & = \frac{1}{4} B \left(\frac{5}{4}, \frac{3}{4}\right) & \small \color{#3D99F6}{B(x,y) = \dfrac{\Gamma(x)\Gamma(y)}{\Gamma(x+y)}} \\ & = \dfrac{\color{#3D99F6}{\Gamma \left(\frac{5}{4} \right)} \Gamma \left( \frac{3}{4} \right)} {4 \Gamma \left( \frac{5}{4} + \frac{3}{4} \right)} & \small \color{#3D99F6}{\Gamma (1+x) = x \Gamma(x)} \\ & = \dfrac{\color{#3D99F6}{\frac{1}{4} \Gamma \left(\frac{1}{4} \right)} \Gamma \left( \frac{3}{4} \right)} {4 \color{#D61F06} {\Gamma \left( 2 \right)}} & \small \color{#D61F06}{\Gamma(n) = (n-1)!} \\ & = \dfrac{\color{#3D99F6}{\Gamma \left(\frac{1}{4} \right) \Gamma \left( \frac{3}{4} \right)}} {16 \color{#D61F06} {(1)}} & \small \color{#3D99F6}{\Gamma(x) \Gamma(1-x) = \dfrac{\pi}{\sin (\pi x)}, \quad x = \frac{3}{4}} \\ & = \dfrac{\sqrt{2}\pi}{16} = \dfrac{\pi}{8\sqrt{2}} \end{array}

10 a + b = 82 \Rightarrow 10a + b = \boxed{82}

@Chew-Seong Cheong Exactly the same sir!! I learnt Gamma Function recently and was amazed by it....!!

Aaghaz Mahajan - 3 years, 1 month ago
Adarsh Kumar
Oct 6, 2015

Take 1 + x 4 = z 1+x^4=z Differentiating we get, d z d x = 4 x 3 \dfrac{dz}{dx}=4x^3 .Now,the integral becomes, I = 0 x 4 ( 1 + x 4 ) 2 = 1 4 1 ( z 1 ) 1 4 z 2 d z I=\int_{0}^{\infty}\dfrac{x^4}{(1+x^4)^{2}}\\ =\dfrac{1}{4}\int_{1}^{\infty}\dfrac{(z-1)^{\frac{1}{4}}}{z^2}dz .Now,taking z = sec 2 θ z=\sec^2\theta , differentiating we get, d z d θ = 2 sec 2 θ tan θ \dfrac{dz}{d\theta}=2\sec^2\theta\tan\theta ,substituting we get, 1 2 0 π 2 tan θ sec 2 θ tan θ sec 4 θ d θ = 1 2 0 π 2 tan 3 2 θ sec 2 θ \dfrac{1}{2}\int_{0}^{\frac{\pi}{2}}\dfrac{\sqrt{\tan\theta}\sec^2\theta\tan\theta}{\sec^4\theta}d\theta\\ =\dfrac{1}{2}\int_{0}^{\frac{\pi}{2}}\dfrac{\tan^{\frac{3}{2}}\theta}{\sec^2\theta} .Converting it into sin \sin and c o s cos ,we get, I = 1 2 0 π 2 sin 3 2 θ cos 1 2 θ d θ I = 1 2 0 π 2 cos 3 2 θ sin 1 2 θ d θ I=\dfrac{1}{2}\int_{0}^{\frac{\pi}{2}}\sin^{\frac{3}{2}}\theta\cos^{\frac{1}{2}}\theta d\theta\\ I=\dfrac{1}{2}\int_{0}^{\frac{\pi}{2}}\cos^{\frac{3}{2}}\theta\sin^{\frac{1}{2}}\theta d\theta .Adding we get that, 2 I = 1 2 0 π 2 sin θ cos θ ( sin θ + cos θ ) d θ 2I=\dfrac{1}{2}\int_{0}^{\frac{\pi}{2}}\sqrt{\sin\theta\cos\theta}(\sin\theta+\cos\theta)d\theta .Making the substitution sin θ cos θ = y 1 y 2 2 = sin θ cos θ \sin\theta-\cos\theta=y\Longrightarrow \dfrac{1-y^2}{2}=\sin\theta\cos\theta ,differentiating we get, d y d θ = cos θ + sin θ \dfrac{dy}{d\theta}=\cos\theta+\sin\theta .Substituting we get, 2 I = 1 2 1 1 1 y 2 d y = 0 1 1 y 2 d y 2I=\dfrac{1}{2}\int_{-1}^{1}\sqrt{1-y^2}dy\\ =\int_{0}^{1}\sqrt{1-y^2}dy .Substituting y = sin ϕ y=\sin\phi ,we get d ϕ d y = cos ϕ \dfrac{d\phi}{dy}=\cos\phi .Substituting in the integral we get, 2 I = 0 π 2 cos 2 ϕ d ϕ 2I=\int_{0}^{\frac{\pi}{2}}\cos^2\phi d\phi .This is a simple one I leave it to you.The final answer that you should get is I = 0 x 4 ( 1 + x 4 ) 2 = π 8 2 \color{#D61F06}{\boxed{\large{I=\displaystyle\int_{0}^{\infty}\dfrac{x^4}{(1+x^4)^{2}}=\dfrac{\pi}{8\sqrt{2}}}}} .And done!

Well nice method! Beta function makes it easy

Aditya Kumar - 5 years, 8 months ago

Log in to reply

Thanks a lot!I haven't learnt Beta function actually.

Adarsh Kumar - 5 years, 8 months ago

Log in to reply

Nice solution. But too lengthy.

Surya Prakash - 5 years, 8 months ago

Log in to reply

@Surya Prakash your problem itself is lengthy brother. i have one method. add 1 and subtract 1 from numerator and then try, then you have only fractions involving even power of x only and you can get ans without using Beta function or Ramanujan master theorem. i will try to write and mail you.

manish kumar singh - 5 years, 8 months ago

Ramanujan(Master Theorem) makes it as easy as a pie.

Kartik Sharma - 5 years, 8 months ago

Log in to reply

Hey @Kartik Sharma , can u send the best website to learn about Ramanujan Master Theorem. It is very hard to understand in wikipedia.

Surya Prakash - 5 years, 8 months ago

Can u post your solution. I'm getting a different answer. Using Master theorem. I may have made a mistake in Mellin's transform. Please post ur solution. :'(

Aditya Kumar - 5 years, 8 months ago

Log in to reply

Got my mistake!

Aditya Kumar - 5 years, 8 months ago

@Calvin Lin i carelessly forgot to tick on the box given.Could you please provide feedback when convenient?Sorry.

Adarsh Kumar - 5 years, 8 months ago
Aditya Kumar
Jan 17, 2016

Alternate Solution:

I = 0 x 4 ( 1 + x 4 ) 2 d x = 1 4 0 x 1 4 ( 1 + x ) 2 d x = 1 4 M { 1 ( 1 + x ) 2 } ( 1 4 ) I=\int _{ 0 }^{ \infty }{ \frac { { x }^{ 4 } }{ { \left( 1+{ x }^{ 4 } \right) }^{ 2 } } dx } \\ =\frac { 1 }{ 4 } \int _{ 0 }^{ \infty }{ \frac { { x }^{ \frac { 1 }{ 4 } } }{ { \left( 1+{ x } \right) }^{ 2 } } dx } \\ =\frac { 1 }{ 4 } M\left\{ \frac { 1 }{ { \left( 1+{ x } \right) }^{ 2 } } \right\} \left( \frac { 1 }{ 4 } \right)

where M{f(x)}(s) is Mellin Transform of f(x) over s.

Therefore, by Ramanujan's Master Theorem,

I = Γ ( 1 4 ) Γ ( 3 4 ) 16 I=\frac { \Gamma \left( \frac { 1 }{ 4 } \right) \Gamma \left( \frac { 3 }{ 4 } \right) }{ 16 }

@Pi Han Goh here's one using rmt.

Aditya Kumar - 5 years, 5 months ago
Hassan Abdulla
May 1, 2018

I ( a ) = 0 1 ( 1 + a x 4 ) d x l e t x = u a 1 4 d x = d u a 1 4 I ( a ) = a 1 4 0 1 1 + u 4 d u = a 1 4 π 2 2 d d a I ( a ) = 0 x 4 ( 1 + a x 4 ) 2 d x = π 2 2 1 4 a 5 4 d d a I ( 1 ) = 0 x 4 ( 1 + x 4 ) 2 d x = π 8 2 I\left( a \right) =\int _{ 0 }^{ \infty } \frac { -1 }{ (1+ax^{ 4 }) } dx\\ let\quad x=u\cdot a^{ \frac { -1 }{ 4 } }\Rightarrow dx=du\cdot a^{ \frac { -1 }{ 4 } }\\ I\left( a \right) =-a^{ \frac { -1 }{ 4 } }\int _{ 0 }^{ \infty } \frac { 1 }{ 1+u^{ 4 } } du=-a^{ \frac { -1 }{ 4 } }\frac { \pi }{ 2\sqrt { 2 } } \\ \frac { d }{ da } I\left( a \right) =\int _{ 0 }^{ \infty } \frac { x^{ 4 } }{ (1+ax^{ 4 })^{ 2 } } dx=\frac { \pi }{ 2\sqrt { 2 } } \cdot \frac { 1 }{ 4 } a^{ \frac { -5 }{ 4 } }\\ \frac { d }{ da } I\left( 1 \right) =\int _{ 0 }^{ \infty } \frac { x^{ 4 } }{ (1+x^{ 4 })^{ 2 } } dx=\frac { \pi }{ 8\sqrt { 2 } }

First Last
Jun 17, 2017

Integrating by parts: I = 0 x 4 ( 1 + x 4 ) 2 d x = x 4 ( 1 + x 4 ) 0 + 1 4 0 1 1 + x 4 d x \displaystyle I = \int_0^\infty\frac{x^4}{(1+x^4)^2}dx = \frac{-x}{4(1+x^4)}\bigg|^\infty_0+\frac1{4}\int_0^\infty\frac1{1+x^4}dx

0 1 x n + 1 d x = 0 0 e t ( 1 + x n ) d x d t \displaystyle\int_{0}^{\infty}\frac{1}{x^n+1}dx = \int_{0}^{\infty}\int_{0}^{\infty}e^{-t(1+x^n)}dxdt

Sub u = x n t d u = n x n 1 t d x \displaystyle u = x^nt\quad du = nx^{n-1}t\,dx

1 n 0 e t t 1 n d t 0 u 1 n 1 e u d u = Γ ( 1 1 n ) Γ ( 1 n ) n = π n sin π n \displaystyle\frac{1}{n}\int_{0}^{\infty}e^{-t}t^{\frac{-1}{n}}dt\int_{0}^{\infty}u^{\frac{1}{n}-1}e^{-u}du=\frac{\Gamma(1-\frac{1}{n})\Gamma(\frac{1}{n})}{n} = \frac{\pi}{n\sin{\frac{\pi}{n}}}

I = 1 4 0 1 1 + x 4 d x = π 8 2 \displaystyle I = \frac1{4}\int_0^\infty\frac1{1+x^4}dx = \boxed{\frac{\pi}{8\sqrt{2}}}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...