Inspired By Kishore S Shenoy

Calculus Level 5

0 ( x ln x 1 + x 2 ) 2 d x = A π B C \large \int_0^\infty \left( \dfrac{x \ln x} {1+x^2} \right)^2 \, dx = \dfrac{A\pi^B}C

If the equation above holds true for positive integers A , B A,B and C C , where A , C A,C are coprime, find A + B + C A+B+C .


Inspiration .


The answer is 20.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Let us consider the function J ( a ) = 0 x a ( 1 + x 2 ) 2 d x \displaystyle J(a) = \int_{0}^{\infty} \frac{x^a}{(1+x^2)^2 } dx .

We need to obtain J ( a ) ] a = 2 = 0 ( x ln x 1 + x 2 ) 2 d x \displaystyle J''(a)]_{a=2} = \int_0^\infty \left( \dfrac{x \ln x} {1+x^2} \right)^2 \, dx

Substitute x 2 = u x^2=u and the integral turns,

J ( a ) = 1 2 0 u a 1 2 ( 1 + u ) 2 d u \displaystyle J(a) = \frac{1}{2} \int_{0}^{\infty} \frac{u^{\frac{a-1}{2}}}{(1+u)^2} du

Using definition of Beta Function , β ( a , b ) = 0 u a 1 ( 1 + u ) a + b d u \displaystyle \beta(a,b)=\int_{0}^{\infty} \frac{u^{a-1}}{(1+u)^{a+b}}du ,

J ( a ) = 1 2 β ( a + 1 2 , 3 a 2 ) \displaystyle J(a) = \frac{1}{2} \beta(\frac{a+1}{2},\frac{3-a}{2})

Differentiating twice with respect to a a we get J ( a ) = 1 8 β ( a + 1 2 , 3 a 2 ) [ ( ψ ( 0 ) ( a + 1 2 ) ψ ( 0 ) ( 3 a 2 ) ) 2 + ψ ( 1 ) ( a + 1 2 ) + ψ ( 1 ) ( 3 a 2 ) ] \displaystyle J''(a) = \frac{1}{8}\beta(\frac{a+1}{2},\frac{3-a}{2}) [ (\psi_{(0)}(\frac{a+1}{2})-\psi_{(0)}(\frac{3-a}{2}))^2 + \psi_{(1)}(\frac{a+1}{2})+\psi_{(1)}(\frac{3-a}{2})]

Putting a = 2 a=2 and substituting values for ψ ( 0 ) ( 3 2 ) = γ 2 l n 2 + 2 , ψ ( 0 ) ( 1 2 ) = γ 2 l n 2 , ψ ( 1 ) ( 3 2 ) = π 2 2 4 , ψ ( 1 ) ( 1 2 ) = π 2 2 \displaystyle \psi_{(0)}(\frac{3}{2})=-\gamma -2ln2 +2,\psi_{(0)}(\frac{1}{2})=-\gamma-2ln2,\psi_{(1)}(\frac{3}{2}) = \frac{\pi^2}{2} -4 , \psi_{(1)}(\frac{1}{2}) = \frac{\pi^2}{2} we get ,

J ( 2 ) = π 3 16 A + B + C = 20 \large J''(2) = \frac{\pi^3}{16}\implies \boxed{A+B+C=20}

Ohh beta ....that one is tough ..not learned yet ...bro ..

Sayandeep Ghosh - 5 years ago

Log in to reply

English kom boko -_-

Log in to reply

Yo ...na bokle nale pore jharba tai boklam ..huh...-_-

Sayandeep Ghosh - 5 years ago

Log in to reply

@Sayandeep Ghosh Kal jabona kin2, chole asis

Log in to reply

@Aditya Narayan Sharma Haaaa asbo .... BTW kal Hove ta ki???

Sayandeep Ghosh - 5 years ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...