1 0 1 × 2 + 1 0 2 2 × 3 + 1 0 3 3 × 4 + 1 0 4 4 × 5 + …
If the value of the series above can be expressed as B A , where A and B are coprime positive integers, find the value of A + B .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
A non-calculus approach,
Let, S = 1 0 1 × 2 + 1 0 2 2 × 3 + 1 0 3 3 × 4 + 1 0 4 4 × 5 . . . . . . . . . . . . . . . . . . . . ∞ − − − − − − − ( 1 ) ⇒ 1 0 S = 1 0 2 1 × 2 + 1 0 3 2 × 3 + 1 0 4 3 × 4 + 1 0 5 4 × 5 . . . . . . . . . . . . . . . . . . . . ∞ − − − − − − − − ( 2 ) S u b t r a c t i n g ( 1 ) f r o m ( 2 ) , 1 0 9 S = 1 0 1 × 2 + 1 0 2 2 × 2 + 1 0 3 3 × 2 + 1 0 4 4 × 2 . . . . . . . . . . . . . . . . . . . . ∞ ⇒ 2 0 9 S = 1 0 1 + 1 0 2 2 + 1 0 3 3 + 1 0 4 4 . . . . . . . . . . . . . . . . . . . . ∞ − − − − − − − − ( 3 ) ⇒ 2 0 0 9 S = 1 0 2 1 + 1 0 3 2 + 1 0 4 3 + 1 0 5 4 . . . . . . . . . . . . . . . . . . . . ∞ − − − − − − − − ( 4 ) A g a i n S u b t r a c t i n g ( 3 ) f r o m ( 4 ) , 2 0 0 8 1 S = 1 0 1 + 1 0 2 1 + 1 0 3 1 + 1 0 4 1 . . . . . . . . . . . . . . . . . ∞ = 1 − 1 0 1 1 0 1 = 9 1 ∴ S = 7 2 9 2 0 0 = B A T h e r e f o r e A + B = 9 2 9
Phew! I did all of that summation approach in my mind while getting a haircut. Thought I'd get it wrong.
Did a rather longer method but I did it by algebra too.
Genius thinking man
You have done solution absolutely correct but at last there is a calculation mistake .
It should be 929
Log in to reply
Thanks. Edited.
By binomial expansion,
( 1 − x ) − 3 = 1 + ( 1 3 ) x + ( 2 4 ) x 2 + ( 3 5 ) x 3 + …
2 ( 1 − x ) − 3 = 1 × 2 + 2 ( 1 3 ) x + 2 ( 2 4 ) x 2 + 2 ( 3 5 ) x 3 + …
2 ( 1 − x ) − 3 = 1 × 2 + 2 × 3 x + 3 × 4 x 2 + 4 × 5 x 3 + …
2 x ( 1 − x ) − 3 = 1 × 2 x + 2 × 3 x 2 + 3 × 4 x 3 + 4 × 5 x 4 + …
Taking x = 1 0 1 . We get,
1 0 1 × 2 + 1 0 2 2 × 3 + 1 0 3 3 × 4 + 1 0 4 4 × 5 + … = 2 × 1 0 1 × 1 − ( 1 0 1 ) 3 1 = 7 2 9 2 0 0
Therefore, a = 2 0 0 and b = 7 2 9 . a + b = 9 2 9 .
Using Calculus:
Since 1 + x + x 2 + x 3 + x 4 + … = 1 − x 1
Differentiate it w.r.t x ,
1 + 2 x + 3 x 2 + 4 x 3 + 5 x 4 + … = ( 1 − x ) 2 1
Differentiate it again w.r.t x ,
1 × 2 + 2 × 3 x + 3 × 4 x 2 + 4 × 5 x 3 + … = ( 1 − x ) 3 2
Multiplying with x on both sides, we get
1 × 2 x + 2 × 3 x 2 + 3 × 4 x 3 + 4 × 5 x 4 + … = ( 1 − x ) 3 2 x
Taking x = 1 0 1 .
1 0 1 × 2 + 1 0 2 2 × 3 + 1 0 3 3 × 4 + 1 0 4 4 × 5 + … = 2 × 1 0 1 × 1 − ( 1 0 1 ) 3 1 = 7 2 9 2 0 0
Therefore, a = 2 0 0 and b = 7 2 9 . a + b = 9 2 9 .
Good approaches used here.
One more method: Take S as given sum and let this be equation 1 . Now divide S by 10 shift by one term and subtract column wise to get 0.9*S = summation ( n/10^n) Now RHS is infinite AGP with a sum of 10/81. Now S=200/729
How you thought about it?
Log in to reply
Actually I solved that using calculus. I got the first method after posting the problem.
Log in to reply
Did you get the calculus solution before or after I posted the generalisation?
Log in to reply
@Sharky Kesa – Actually I made this problem based on calculus approach.
Another solution employing differentiation: Let f ( x ) = n = 1 ∑ ∞ n ( n + 1 ) x n − 1 , then the required value is equal to 1 0 1 f ( 1 0 1 ) .
Now f ( x ) = n = 1 ∑ ∞ n ( n + 1 ) x n − 1 = n = 1 ∑ ∞ d x 2 d 2 x n + 1 = d x 2 d 2 n = 1 ∑ ∞ x n + 1 = d x 2 d 2 1 − x x 2 = d x d ( 1 − x ) 2 2 x − x 2 = d x d ( 1 − ( 1 − x ) 2 1 ) = ( 1 − x ) 3 2 ; therefore 1 0 1 f ( 1 0 1 ) = 1 0 1 ( 1 0 9 ) 3 2 = 9 3 2 ⋅ 1 0 2 = 7 2 9 2 0 0 . Thus the answer is 2 0 0 + 7 2 9 = 9 2 9 .
'Alternatively'.
limit_denominator finds the nearest fraction to a given fraction limiting the denominator to the value of its single argument.
Doing by method of shifting of summation
=2×1/10+2×(1+2)/10²+2×(1+2+3)/10³+...=2×((1/10+1/10²+1/10³+...)+2(2/10²+2/10³+2/10⁴+...)+...)= 2×(1/10+1/10²+...)×(1+2/10+3/10²+...)= 2×(1/10+1/10²+...)×(1+1/10+1/10²+...)² =2×1/10×(1+1/10+1/10²+...)³= 1/5*(10/9)³=200/729 So A+B=200+729=929
Problem Loading...
Note Loading...
Set Loading...
We know that Differentiate both sides Differentiate again Multiplied by x Let x = 1 0 1 < 1 1 − x 1 ( 1 − x ) 2 1 ( 1 − x ) 3 2 ( 1 − x ) 3 2 x ( 1 − 1 0 1 ) 3 1 0 2 = 1 + x + x 2 + x 3 + x 4 + x 5 + . . . = 1 + 2 x + 3 x 2 + 4 x 3 + 5 x 4 + . . . = 1 × 2 + 2 × 3 x + 3 × 4 x 2 + 4 × 5 x 3 + . . . = 1 × 2 x + 2 × 3 x 2 + 3 × 4 x 3 + 4 × 5 x 4 + . . . = 1 0 1 × 2 + 1 0 2 2 × 3 + 1 0 3 3 × 4 + 1 0 4 4 × 5 + . . . = 7 2 9 2 0 0 for − 1 < x < 1
⇒ A + B = 9 2 9