AP/GP

Algebra Level 4

1 × 2 10 + 2 × 3 1 0 2 + 3 × 4 1 0 3 + 4 × 5 1 0 4 + \large \dfrac{1 \times 2}{10} + \dfrac{2 \times 3}{10^2} + \dfrac{3 \times 4}{10^3} + \dfrac{4 \times 5}{10^4} + \ldots

If the value of the series above can be expressed as A B \dfrac{A}{B} , where A A and B B are coprime positive integers, find the value of A + B A+B .


The answer is 929.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

7 solutions

Chew-Seong Cheong
Oct 30, 2015

We know that 1 1 x = 1 + x + x 2 + x 3 + x 4 + x 5 + . . . for 1 < x < 1 Differentiate both sides 1 ( 1 x ) 2 = 1 + 2 x + 3 x 2 + 4 x 3 + 5 x 4 + . . . Differentiate again 2 ( 1 x ) 3 = 1 × 2 + 2 × 3 x + 3 × 4 x 2 + 4 × 5 x 3 + . . . Multiplied by x 2 x ( 1 x ) 3 = 1 × 2 x + 2 × 3 x 2 + 3 × 4 x 3 + 4 × 5 x 4 + . . . Let x = 1 10 < 1 2 10 ( 1 1 10 ) 3 = 1 × 2 10 + 2 × 3 1 0 2 + 3 × 4 1 0 3 + 4 × 5 1 0 4 + . . . = 200 729 \begin{array}{lrll} \text{We know that } & \dfrac{1}{1-x} & = 1 + x + x^2 + x^3 + x^4 + x^5 + ... & \text{for } -1 < x < 1 \\ \text{Differentiate both sides } & \dfrac{1}{(1-x)^2} & = 1 + 2x + 3x^2 + 4x^3 + 5x^4 + ... \\ \text{Differentiate again } & \dfrac{2}{(1-x)^3} & = 1\times 2 + 2\times 3x + 3\times 4x^2 + 4\times 5x^3 + ... \\ \text{Multiplied by }x & \dfrac{2x}{(1-x)^3} & = 1\times 2x + 2\times 3x^2 + 3\times 4x^3 + 4\times 5x^4 + ... \\ \text{Let }x = \dfrac{1}{10} < 1 & \dfrac{\frac{2}{10}}{\left(1-\frac{1}{10}\right) ^3} & = \dfrac{1\times 2}{10} + \dfrac{2\times 3}{10^2} + \dfrac{3\times 4}{10^3} + \dfrac{4\times 5}{10^4} + ... \\ & & = \dfrac{200}{729} \end{array}

A + B = 929 \Rightarrow A + B = \boxed{929}

Ahmed Arup Shihab
Oct 30, 2015

A non-calculus approach,

Let, S = 1 × 2 10 + 2 × 3 10 2 + 3 × 4 10 3 + 4 × 5 10 4 . . . . . . . . . . . . . . . . . . . . ( 1 ) S 10 = 1 × 2 10 2 + 2 × 3 10 3 + 3 × 4 10 4 + 4 × 5 10 5 . . . . . . . . . . . . . . . . . . . . ( 2 ) S u b t r a c t i n g ( 1 ) f r o m ( 2 ) , 9 S 10 = 1 × 2 10 + 2 × 2 10 2 + 3 × 2 10 3 + 4 × 2 10 4 . . . . . . . . . . . . . . . . . . . . 9 S 20 = 1 10 + 2 10 2 + 3 10 3 + 4 10 4 . . . . . . . . . . . . . . . . . . . . ( 3 ) 9 S 200 = 1 10 2 + 2 10 3 + 3 10 4 + 4 10 5 . . . . . . . . . . . . . . . . . . . . ( 4 ) A g a i n S u b t r a c t i n g ( 3 ) f r o m ( 4 ) , 81 S 200 = 1 10 + 1 10 2 + 1 10 3 + 1 10 4 . . . . . . . . . . . . . . . . . = 1 10 1 1 10 = 1 9 S = 200 729 = A B T h e r e f o r e A + B = 929 S=\frac { 1\times 2 }{ 10 } +\frac { 2\times 3 }{ { 10 }^{ 2 } } +\frac { 3\times 4 }{ { 10 }^{ 3 } } +\frac { 4\times 5 }{ { 10 }^{ 4 } } ....................\infty \quad \quad -------\quad (1)\\ \Rightarrow \frac { S }{ 10 } =\frac { 1\times 2 }{ { 10 }^{ 2 } } +\frac { 2\times 3 }{ { 10 }^{ 3 } } +\frac { 3\times 4 }{ { 10 }^{ 4 } } +\frac { 4\times 5 }{ { 10 }^{ 5 } } ....................\infty \quad \quad \quad --------(2)\\ Subtracting\quad (1)\quad from\quad (2),\\ \\ \frac { 9S }{ 10 } =\frac { 1\times 2 }{ 10 } +\frac { 2\times 2 }{ { 10 }^{ 2 } } +\frac { 3\times 2 }{ { 10 }^{ 3 } } +\frac { 4\times 2 }{ { 10 }^{ 4 } } ....................\infty \\ \Rightarrow \frac { 9S }{ 20 } =\frac { 1 }{ 10 } +\frac { 2 }{ { 10 }^{ 2 } } +\frac { 3 }{ { 10 }^{ 3 } } +\frac { 4 }{ { 10 }^{ 4 } } ....................\infty \quad --------(3)\\ \Rightarrow \frac { 9S }{ 200 } =\frac { 1 }{ { 10 }^{ 2 } } +\frac { 2 }{ { 10 }^{ 3 } } +\frac { 3 }{ { 10 }^{ 4 } } +\frac { 4 }{ { 10 }^{ 5 } } ....................\infty \quad \quad \quad --------(4)\\ Again\quad Subtracting\quad (3)\quad from\quad (4),\\ \frac { 81S }{ 200 } =\frac { 1 }{ 10 } +\frac { 1 }{ { 10 }^{ 2 } } +\frac { 1 }{ { 10 }^{ 3 } } +\frac { 1 }{ { 10 }^{ 4 } } .................\infty \quad =\frac { \frac { 1 }{ 10 } }{ 1-\frac { 1 }{ 10 } } =\frac { 1 }{ 9 } \\ \therefore \quad S=\frac { 200 }{ 729 } =\frac { A }{ B } \\ \\ Therefore\quad A+B= \fbox{929}

Phew! I did all of that summation approach in my mind while getting a haircut. Thought I'd get it wrong.

Prabhav Jain - 5 years, 7 months ago

Did a rather longer method but I did it by algebra too.

Shreyash Rai - 5 years, 5 months ago

Genius thinking man

Pil Pinas - 4 years, 7 months ago

You have done solution absolutely correct but at last there is a calculation mistake .

Rakshit Joshi - 5 years, 7 months ago

Log in to reply

Thanks. Edited.

Ahmed Arup Shihab - 5 years, 7 months ago

It should be 929

Kushagra Sahni - 5 years, 7 months ago

Log in to reply

Thanks. Edited.

Ahmed Arup Shihab - 5 years, 7 months ago

Log in to reply

Done the exact same procedure!

Navneel Mandal - 5 years, 7 months ago
Surya Prakash
Oct 29, 2015

By binomial expansion,

( 1 x ) 3 = 1 + ( 3 1 ) x + ( 4 2 ) x 2 + ( 5 3 ) x 3 + \left(1-x \right)^{-3} = 1 + \binom{3}{1} x + \binom{4}{2}x^2 + \binom{5}{3}x^3 + \ldots

2 ( 1 x ) 3 = 1 × 2 + 2 ( 3 1 ) x + 2 ( 4 2 ) x 2 + 2 ( 5 3 ) x 3 + 2 \left(1-x \right)^{-3} = 1 \times 2 +2 \binom{3}{1} x +2 \binom{4}{2}x^2 + 2 \binom{5}{3}x^3 + \ldots

2 ( 1 x ) 3 = 1 × 2 + 2 × 3 x + 3 × 4 x 2 + 4 × 5 x 3 + 2 \left(1-x \right)^{-3} = 1 \times 2 +2 \times 3 x +3 \times 4 x^2 + 4 \times 5 x^3 + \ldots

2 x ( 1 x ) 3 = 1 × 2 x + 2 × 3 x 2 + 3 × 4 x 3 + 4 × 5 x 4 + 2 x \left(1-x \right)^{-3} = 1 \times 2x +2 \times 3 x^2 +3 \times 4 x^3 + 4 \times 5 x^4 + \ldots

Taking x = 1 10 x= \dfrac{1}{10} . We get,

1 × 2 10 + 2 × 3 1 0 2 + 3 × 4 1 0 3 + 4 × 5 1 0 4 + = 2 × 1 10 × 1 1 ( 1 10 ) 3 = 200 729 \dfrac{1 \times 2}{10} + \dfrac{2 \times 3}{10^2} + \dfrac{3 \times 4}{10^3} + \dfrac{4 \times 5}{10^4} + \ldots = 2 \times \dfrac{1}{10} \times \dfrac{1}{1- \left( \dfrac{1}{10} \right) ^3} = \dfrac{200}{729}

Therefore, a = 200 a=200 and b = 729 b=729 . a + b = 929 \boxed{a+b = 929} .


Using Calculus:

Since 1 + x + x 2 + x 3 + x 4 + = 1 1 x 1+x+ x^2 +x^3 + x^4 + \ldots = \dfrac{1}{1-x}

Differentiate it w.r.t x x ,

1 + 2 x + 3 x 2 + 4 x 3 + 5 x 4 + = 1 ( 1 x ) 2 1+ 2x + 3x^2 + 4x^3 +5 x^4 + \ldots = \dfrac{1}{\left(1-x \right)^2}

Differentiate it again w.r.t x x ,

1 × 2 + 2 × 3 x + 3 × 4 x 2 + 4 × 5 x 3 + = 2 ( 1 x ) 3 1 \times 2 + 2\times 3 x + 3 \times 4 x^2 + 4 \times 5 x^3 + \ldots = \dfrac{2}{\left( 1-x \right)^3}

Multiplying with x x on both sides, we get

1 × 2 x + 2 × 3 x 2 + 3 × 4 x 3 + 4 × 5 x 4 + = 2 x ( 1 x ) 3 1 \times 2x +2 \times 3 x^2 +3 \times 4 x^3 + 4 \times 5 x^4 + \ldots = \dfrac{2x}{\left(1-x \right)^3}

Taking x = 1 10 x=\dfrac{1}{10} .

1 × 2 10 + 2 × 3 1 0 2 + 3 × 4 1 0 3 + 4 × 5 1 0 4 + = 2 × 1 10 × 1 1 ( 1 10 ) 3 = 200 729 \dfrac{1 \times 2}{10} + \dfrac{2 \times 3}{10^2} + \dfrac{3 \times 4}{10^3} + \dfrac{4 \times 5}{10^4} + \ldots = 2 \times \dfrac{1}{10} \times \dfrac{1}{1- \left( \dfrac{1}{10} \right) ^3} = \dfrac{200}{729}

Therefore, a = 200 a=200 and b = 729 b=729 . a + b = 929 \boxed{a+b = 929} .

Moderator note:

Good approaches used here.

One more method: Take S as given sum and let this be equation 1 . Now divide S by 10 shift by one term and subtract column wise to get 0.9*S = summation ( n/10^n) Now RHS is infinite AGP with a sum of 10/81. Now S=200/729

Aakash Khandelwal - 5 years, 7 months ago

How you thought about it?

harish ghunawat - 5 years, 7 months ago

Log in to reply

Actually I solved that using calculus. I got the first method after posting the problem.

Surya Prakash - 5 years, 7 months ago

Log in to reply

Did you get the calculus solution before or after I posted the generalisation?

Sharky Kesa - 5 years, 7 months ago

Log in to reply

@Sharky Kesa Actually I made this problem based on calculus approach.

Surya Prakash - 5 years, 7 months ago
Arjen Vreugdenhil
Oct 30, 2015

Another solution employing differentiation: Let f ( x ) = n = 1 n ( n + 1 ) x n 1 , f(x) = \sum_{n=1}^\infty n(n+1)x^{n-1}, then the required value is equal to 1 10 f ( 1 10 ) \tfrac1{10}\ f(\tfrac1{10}) .

Now f ( x ) = n = 1 n ( n + 1 ) x n 1 = n = 1 d 2 d x 2 x n + 1 = d 2 d x 2 n = 1 x n + 1 = d 2 d x 2 x 2 1 x = d d x 2 x x 2 ( 1 x ) 2 = d d x ( 1 1 ( 1 x ) 2 ) = 2 ( 1 x ) 3 ; f(x) = \sum_{n=1}^\infty n(n+1)x^{n-1} = \sum_{n=1}^\infty \frac{d^2}{dx^2} x^{n+1} = \frac{d^2}{dx^2} \sum_{n=1}^\infty x^{n+1} \\ = \frac{d^2}{dx^2} \frac{x^2}{1-x} = \frac{d}{dx} \frac{2x-x^2}{(1-x)^2} = \frac{d}{dx} \left(1-\frac{1}{(1-x)^2}\right) = \frac{2}{(1-x)^3}; therefore 1 10 f ( 1 10 ) = 1 10 2 ( 9 10 ) 3 = 2 1 0 2 9 3 = 200 729 . \tfrac1{10}\ f(\tfrac1{10}) = \tfrac1{10}\ \frac{2}{(\tfrac9{10})^3} = \frac{2\cdot 10^2}{9^3} = \frac{200}{729}. Thus the answer is 200 + 729 = 929 200 + 729 = \boxed{929} .

Bill Bell
Oct 31, 2015

'Alternatively'.

limit_denominator finds the nearest fraction to a given fraction limiting the denominator to the value of its single argument.

Righved K
Oct 30, 2015

Doing by method of shifting of summation

Nikola Djuric
Dec 14, 2015

=2×1/10+2×(1+2)/10²+2×(1+2+3)/10³+...=2×((1/10+1/10²+1/10³+...)+2(2/10²+2/10³+2/10⁴+...)+...)= 2×(1/10+1/10²+...)×(1+2/10+3/10²+...)= 2×(1/10+1/10²+...)×(1+1/10+1/10²+...)² =2×1/10×(1+1/10+1/10²+...)³= 1/5*(10/9)³=200/729 So A+B=200+729=929

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...