Inspired by Michael Mendrin

Calculus Level 5

A rectangle's base lie on the x x -axis while it's top corners are on the curve y = x x 2 + 1 \displaystyle y =\dfrac{x}{x^2 + 1} . Now a cylinder is obtained by revolving Rectangle about x-axis, if the maximum volume of cylinder is V m a x V_{max} . Find 1000 V m a x \displaystyle \lfloor 1000V_{max} \rfloor .


Inspired by this awesome problem


The answer is 785.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Ayush Verma
Mar 23, 2015

A s q u e s t i o n s a i d t o p c o r n e r o n c u r v e a n d a s i d e i s o n x a x i s . S o w e c a n s a y t h a t y c o o r d i n a t e o f b o t h c o r n e r w i l l b e + v e . l e t t o p s i d e i s o n y = r ( r 0 ) , c o r n e r w i l l b e p o i n t s o n w h i c h t h i s c u t c u r v e s o , x 1 + x 2 = r x = 1 ± 1 4 r 2 2 r w h e r e 4 r 2 1 o r r 1 2 s o c o r n e r s a r e ( 1 ± 1 4 r 2 2 r , 0 ) & ( 1 ± 1 4 r 2 2 r , r ) l e n g t h o f r e c t a n g l e a l o n g x a x i s L = x 2 x 1 = 1 4 r 2 r r a d i u s o f c y l i n d e r R = r V o l u m e ( V ) = π R 2 L = π r 1 4 r 2 = π r 2 4 r 4 = π 2 4 r 2 ( 1 4 r 2 ) N o w b y A P G P o r d i f f r e n t i a t i o n y o u w i l l f i n d V w i l l b e m a x f o r 4 r 2 = 1 2 V m a x = π 4 A n s = π 4 × 1000 = 785 As\quad question\quad said\quad top\quad corner\quad on\quad curve\quad and\quad a\quad side\quad is\quad on\quad \\ \\ x-axis.\\ \\ So\quad we\quad can\quad say\quad that\quad y-coordinate\quad of\quad both\quad corner\quad will\quad \\ \\ be\quad +ve.\\ \\ let\quad top\quad side\quad is\quad on\quad y=r\quad (r\ge 0),corner\quad will\quad be\quad points\quad on\\ \\ which\quad this\quad cut\quad curve\quad so,\\ \\ \cfrac { x }{ 1+{ x }^{ 2 } } =r\quad \Rightarrow x=\cfrac { 1\pm \sqrt { 1-4{ r }^{ 2 } } }{ 2r } \quad where\quad 4{ r }^{ 2 }\le 1\quad or\quad r\le \cfrac { 1 }{ 2 } \\ \\ so\quad corners\quad are\quad \left( \cfrac { 1\pm \sqrt { 1-4{ r }^{ 2 } } }{ 2r } ,0 \right) \& \left( \cfrac { 1\pm \sqrt { 1-4{ r }^{ 2 } } }{ 2r } ,r \right) \\ \\ length\quad of\quad rectangle\quad along\quad x-axis\quad L={ x }_{ 2 }{ -x }_{ 1 }=\cfrac { \sqrt { 1-4{ r }^{ 2 } } }{ r } \\ \\ radius\quad of\quad cylinder\quad R=r\\ \\ \therefore \quad Volume(V)=\pi { R }^{ 2 }L=\pi r\sqrt { 1-4{ r }^{ 2 } } =\pi \sqrt { { r }^{ 2 }-4{ r }^{ 4 } } \\ \\ =\cfrac { \pi }{ 2 } \sqrt { { 4r }^{ 2 }\left( 1-{ 4r }^{ 2 } \right) } \\ \\ Now\quad by\quad AP-GP\quad or\quad diffrentiation\quad you\quad will\quad find\quad V\quad \\ \\ will\quad bemax\quad for\quad { 4r }^{ 2 }=\cfrac { 1 }{ 2 } \\ \\ \Rightarrow { V }_{ max }=\cfrac { \pi }{ 4 } \\ \\ Ans=\left\lfloor \cfrac { \pi }{ 4 } \times 1000 \right\rfloor =785

\pi /8 should be the answer for Vmax , pls check!

Raj Mahat - 6 years, 2 months ago

Log in to reply

but where is mistake?

Ayush Verma - 6 years, 2 months ago

Log in to reply

v= \frac { \pi }{ 2 } \sqrt { 4{ r }^{ 2 }(1-4{ r }^{ 2 }) } in the second last step

Raj Mahat - 6 years, 2 months ago

Log in to reply

@Raj Mahat You should post your solution so that i can compare.

and see https://brilliant.org/math-formatting-guide/

Ayush Verma - 6 years, 2 months ago

@Raj Mahat Thanks,I have edited that.But, as Krishna Sharma said answer will be same.

Ayush Verma - 6 years, 1 month ago

There is typo in your solution(answer will be same)

V = π 2 4 r 2 ( 1 4 r 2 ) \displaystyle V = \dfrac{\pi}{2} \sqrt{4r^2(1 - 4r^2)}

Krishna Sharma - 6 years, 2 months ago

Log in to reply

@Krishna Sharma Thanks,I have edited that .

Ayush Verma - 6 years, 1 month ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...