Inspired by Brian Charlesworth!

Calculus Level 5

n = 0 1 2 n ( n + 1 4 ) \large \sum_{n=0}^\infty \dfrac1{2^n\left(n+\frac14\right)}

If the summation above equals to 2 x ( tan 1 ( y ) + tanh 1 ( z ) ) 2^x( \tan^{-1} (\sqrt y) + \tanh^{-1} (\sqrt z)) , find the value of 2 × x y × z \dfrac{2 \times x}{y\times z} .

Also try - A naturally perfect problem .


The answer is 5.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

n = 0 x n = 1 1 x \displaystyle \sum_{n=0}^{\infty}{x^n} = \frac{1}{1-x}

n = 0 x n 3 4 = x 3 4 1 x \displaystyle \sum_{n=0}^{\infty}{ x^{n-\frac{3}{4} } } = \frac{x^{-\frac{3}{4} } } {1-x}

n = 0 x n 3 4 d x = n = 0 x n 3 4 d x = x 3 4 1 x d x \displaystyle \int{\sum_{n=0}^{\infty}{ x^{n-\frac{3}{4} } }dx} =\sum_{n=0}^{\infty}{\int{ x^{n-\frac{3}{4} }} dx}=\int{ \frac{x^{-\frac{3}{4} } } {1-x} dx}

n = 0 1 n + 1 4 x n + 1 4 = x 3 4 1 x d x \displaystyle \sum_{n=0}^{\infty}{ \frac { 1 }{ n+\frac { 1 }{ 4 } } { x }^{ n+\frac { 1 }{ 4 } }} =\int{ \frac{x^{-\frac{3}{4} } } {1-x} dx}

n = 0 1 n + 1 4 x n = x 1 4 x 3 4 1 x d x x = t 4 \displaystyle \sum_{n=0}^{\infty}{ \frac { 1 }{ n+\frac { 1 }{ 4 } } { x }^{ n}} =x^{-\frac{1}{4}}\int{ \frac{x^{-\frac{3}{4} } } {1-x} dx}\quad\quad \color{#3D99F6}{x=t^4}

n = 0 1 n + 1 4 x n = 4 x 1 4 1 1 t 4 d t \displaystyle \sum_{n=0}^{\infty}{ \frac { 1 }{ n+\frac { 1 }{ 4 } } { x }^{ n}} =4x^{-\frac{1}{4}}\int{ \frac{1} {1-t^4} dt}

n = 0 1 n + 1 4 x n = 4 x 1 4 [ 1 2 ( tan 1 t + tanh 1 t ) ] \displaystyle \sum_{n=0}^{\infty}{ \frac { 1 }{ n+\frac { 1 }{ 4 } } { x }^{ n}} =4x^{-\frac{1}{4}}[\frac{1}{2}(\tan^{-1}{t}+\tanh^{-1}{t})]

n = 0 1 n + 1 4 x n = 4 x 1 4 [ 1 2 ( tan 1 x 1 4 + tanh 1 x 1 4 ) ] x = 1 2 \displaystyle \sum_{n=0}^{\infty}{ \frac { 1 }{ n+\frac { 1 }{ 4 } } { x }^{ n}} =4x^{-\frac{1}{4}}[\frac{1}{2}(\tan^{-1}{x^{\frac{1}{4}}}+\tanh^{-1}{x^{\frac{1}{4}}})]\quad\quad \color{#3D99F6}{x=\frac{1}{2}}

n = 0 1 2 n ( n + 1 4 ) = 2 5 4 [ tan 1 1 2 + tanh 1 1 2 ] \displaystyle \sum_{n=0}^{\infty}{ \frac { 1 }{ 2^n(n+\frac { 1 }{ 4 }) } } =2^{\frac{5}{4}}[\tan^{-1}{\sqrt { \frac { 1 }{ \sqrt { 2 } } } }+\tanh^{-1}{\sqrt { \frac { 1 }{ \sqrt { 2 } } } }]

Kartik Sharma
Feb 1, 2015

Well, this uses two of the important taylor series.

n = 0 x 2 n + 1 2 n + 1 = a r c t a n h ( x ) \sum_{n=0}^{\infty}{\frac{{x}^{2n+1}}{2n+1}} = arctanh(x)

The above can be derived easily by adding other 2 series -

n = 0 x n n = l n ( 1 x ) \sum_{n=0}^{\infty}{\frac{{x}^{n}}{n}} = -ln(1 -x)

n = 0 ( 1 ) n x n n = l n ( 1 + x ) \sum_{n=0}^{\infty}{\frac{{(-1)}^{n}{x}^{n}}{n}} = ln(1 + x)

And we know that l n ( 1 + x ) l n ( 1 x ) = 2 a r c t a n h ( x ) ln(1+x) - ln(1-x) = 2arctanh(x) [If anyone wants its derivation , you can ask in the comment section below]

The second sum will be- n = 0 1 n x 2 n + 1 2 n + 1 = a r c t a n ( x ) \sum_{n=0}^{\infty}{\frac{{-1}^{n}{x}^{2n+1}}{2n+1}} = arctan(x) [This is taylor series of arctangent]

Adding the 1st and 2nd sums, we get -

2 n = 0 x 4 n + 1 4 n + 1 = a r c t a n ( x ) + a r c t a n h ( x ) 2\sum_{n=0}^{\infty}{\frac{{x}^{4n+1}}{4n+1}} = arctan(x) + arctanh(x)

Substituting x = y 1 4 x = {y}^{\frac{1}{4}} ,

2 n = 0 y n y 1 4 4 n + 1 = a r c t a n ( y 1 4 ) + a r c t a n h ( y 1 4 ) 2\sum_{n=0}^{\infty}{\frac{{y}^{n}{y}^{\frac{1}{4}}}{4n+1}} = arctan({y}^{\frac{1}{4}}) + arctanh({y}^{\frac{1}{4}})

2 y 1 4 n = 0 y n 4 n + 1 = a r c t a n ( y 1 4 ) + a r c t a n h ( y 1 4 ) 2{y}^{\frac{1}{4}}\sum_{n=0}^{\infty}{\frac{{y}^{n}}{4n+1}} = arctan({y}^{\frac{1}{4}}) + arctanh({y}^{\frac{1}{4}})

1 2 y 1 4 n = 0 y n n + 1 4 = a r c t a n ( y 1 4 ) + a r c t a n h ( y 1 4 ) \frac{1}{2}{y}^{\frac{1}{4}}\sum_{n=0}^{\infty}{\frac{{y}^{n}}{n+\frac{1}{4}}} = arctan({y}^{\frac{1}{4}}) + arctanh({y}^{\frac{1}{4}})

n = 0 y n n + 1 4 = 2 y 1 4 ( a r c t a n ( y 1 4 ) + a r c t a n h ( y 1 4 ) ) \sum_{n=0}^{\infty}{\frac{{y}^{n}}{n+\frac{1}{4}}} = \frac{2}{{y}^{\frac{1}{4}}}(arctan({y}^{\frac{1}{4}}) + arctanh({y}^{\frac{1}{4}}))

Now substituting y = 1 2 y = \frac{1}{2} completes our job.

= 2 5 4 ( a r c t a n ( 1 2 ) + a r c t a n h ( 1 2 ) ) = {2}^{\frac{5}{4}}(arctan(\sqrt{\frac{1}{\sqrt{2}}}) + arctanh(\sqrt{\frac{1}{\sqrt{2}}}))

And hence, the answer becomes -

2 × 5 4 1 2 × 1 2 = 5 \frac{2 \times \frac{5}{4}}{\frac{1}{\sqrt{2}} \times \frac{1}{\sqrt{2}}} = \boxed{5}

Nice problem, Kartik. At first I thought I was supposed to be looking for integers x , y , z x,y,z , but once I realized they could be any reals then I was able to solve it in the same manner that you did. :)

Brian Charlesworth - 6 years, 4 months ago

Log in to reply

Are there any more methods? Wolfram Alpha gives the answer in terms of some function(I don't remember that name).

Kartik Sharma - 6 years, 4 months ago

Log in to reply

Yeah, I saw the WolframAlpha answer; it used a function I'd never heard of before. :) As for other methods, there is probably an approach using integration, (like Pratik used in the comments to my related question), but I think that in this case it might involve some complex analysis. I'll try and take a more thorough look later.

Brian Charlesworth - 6 years, 4 months ago

Log in to reply

@Brian Charlesworth @brian charlesworth Ok sir, thanks for showing your interest. It would be a great help for me if you help me in this too.

Kartik Sharma - 6 years, 4 months ago

that was a hypergeomtric function

Ciara Sean - 5 years, 9 months ago

Log in to reply

@Ciara Sean Yes, I can understand now what it is. Back when I posted this problem, I didn't have enough knowledge.

Kartik Sharma - 5 years, 9 months ago

Hi Kartik Sharma , I didn't like the fact that this question wasn't of Level 4 or 5, why did you do so ?

A Former Brilliant Member - 6 years, 4 months ago

Log in to reply

Well, yep, I agree that it was a huge mistake on my part. I forgot to do it actually and then what all I could do is repent.

Kartik Sharma - 6 years, 4 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...