0 π arcsin ( cos ( x ) ) 2 d x \int _{ 0 }^{ \pi }{ { \arcsin { (\cos { (x) } ) } }^{ 2 }dx }

Calculus Level 3

Evaluate 0 π ( arcsin ( cos ( x ) ) ) 2 d x . \int _{ 0 }^{ \pi }{ ({ \arcsin { (\cos { (x) } ) } })^{ 2 }dx } . Note: The definition of arcsin ( x ) \arcsin{(x)} used in this problem is restricted to the range [ π 2 , π 2 ] \left[ -\frac { \pi }{ 2 } ,\frac { \pi }{ 2 } \right] .


The answer is 2.58385639.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

10 solutions

Aaghaz Mahajan
Mar 21, 2019

As we know that arcsin x + arccos x = π 2 \arcsin x+\arccos x=\frac{\pi}{2} for all x x so, we can simplify the expression to be integrated :-

0 π ( arcsin ( cos x ) ) 2 d x \displaystyle \int_0^{\pi}\left(\arcsin\left(\cos x\right)\right)^2dx

= 0 π ( π 2 arccos ( cos x ) ) 2 d x \displaystyle =\int_0^{\pi}\left(\frac{\pi}{2}-\arccos\left(\cos x\right)\right)^2dx

= 0 π ( π 2 x ) 2 d x \displaystyle =\int_0^{\pi}\left(\frac{\pi}{2}-x\right)^2dx

= ( π 2 ) 3 3 ( π 2 π ) 3 3 \displaystyle =\frac{\left(\frac{\pi}{2}\right)^3}{3}-\frac{\left(\frac{\pi}{2}-\pi\right)^3}{3}

= π 3 12 \displaystyle =\frac{\pi^3}{12}

Rohan Shinde
Mar 21, 2019

I think you meant I = 0 π ( arcsin ( cos x ) ) 2 d x I=\int_0^{\pi} \left(\arcsin (\cos x)\right)^2dx

Using symmetry we get 0 π ( arcsin ( cos x ) ) 2 d x = 2 0 π 2 ( arcsin ( cos x ) ) 2 d x \displaystyle \int_0^{\pi}\left(\arcsin (\cos x)\right)^2dx=2\int_0^{\frac {\pi}{2}} \left(\arcsin (\cos x)\right)^2dx

Now using that 0 a f ( x ) d x = 0 a f ( a x ) d x \displaystyle \int_0^a f(x) dx=\int_0^a f(a-x)dx with a = π / 2 a=\pi /2 and f ( x ) = ( arcsin ( cos x ) ) 2 f(x)=(\arcsin (\cos x))^2 we get 2 0 π 2 ( arcsin ( cos x ) ) 2 d x = 2 0 π 2 ( arcsin ( sin x ) ) 2 d x \displaystyle 2\int_0^{\frac {\pi}{2}} \left(\arcsin (\cos x)\right)^2dx=2\int_0^{\frac {\pi}{2}} \left(\arcsin (\sin x)\right)^2dx

Now using arcsin ( sin x ) = x \arcsin (\sin x) =x we get 2 0 π 2 ( arcsin ( sin x ) ) 2 d x = 2 0 π 2 x 2 d x = π 3 12 \displaystyle 2\int_0^{\frac {\pi}{2}} \left(\arcsin (\sin x)\right)^2dx=2\int_0^{\frac {\pi}{2}}x^2 dx= \frac {\pi^3}{12}

Chew-Seong Cheong
Mar 21, 2019

I = 0 π sin 1 ( cos x ) 2 d x = 0 π 2 sin 1 ( cos x ) 2 d x + π 2 π sin 1 ( cos x ) 2 d x For x [ π 2 , π ] , cos x [ 1 , 0 ] sin 1 ( cos x ) [ 1 , 0 ] = 0 π 2 sin 1 ( cos x ) 2 d x + 0 π 2 sin 1 ( cos x ) 2 d x Since sin 1 ( cos x ) 2 is even = 2 0 π 2 sin 1 ( cos x ) 2 d x and cos θ = sin ( π 2 θ ) = 2 0 π 2 sin 1 ( sin ( π 2 x ) ) 2 d x = 2 0 π 2 ( π 2 x ) 2 d x = 2 ( π 2 x ) 3 3 0 π 2 = π 3 12 2.584 \begin{aligned} I & = \int_0^\pi \sin^{-1}(\cos x)^2 dx \\ & = \int_0^\frac \pi 2 \sin^{-1}(\cos x)^2 dx + \color{#3D99F6} \int_\frac \pi 2^\pi \sin^{-1}(\cos x)^2 dx & \small \color{#3D99F6} \text{For }x \in \left[\frac \pi 2, \pi\right], \cos x \in [-1,0] \implies \sin^{-1}(\cos x) \in [-1,0] \\ & = \int_0^\frac \pi 2 \sin^{-1}(\cos x)^2 dx + \color{#3D99F6} \int_0^{-\frac \pi 2} \sin^{-1}(\cos x)^2 dx & \small \color{#3D99F6} \text{Since } \sin^{-1} (\cos x)^2 \text{ is even} \\ & = {\color{#3D99F6}2} \int_0^\frac \pi 2 \sin^{-1}({\color{#D61F06}\cos x})^2 dx & \small \color{#D61F06} \text{and } \cos \theta = \sin \left(\frac \pi 2 - \theta\right) \\ & = 2 \int_0^\frac \pi 2 \sin^{-1}\left({\color{#D61F06}\sin \left(\frac \pi 2 - x\right)}\right)^2 dx \\ & = 2 \int_0^\frac \pi 2 \left(\frac \pi 2 - x \right)^2 dx \\ & = - \frac {2\left(\frac \pi 2 - x\right)^3}3 \bigg|_0^\frac \pi 2 \\ & = \frac {\pi^3}{12} \approx \boxed{2.584} \end{aligned}

@Chew-Seong Cheong Sir, instead of expanding ( π 2 x ) 2 \left(\frac{\pi}{2}-x\right)^2 you could have directly integrated it to ( π 2 x ) 3 3 -\frac{\left(\frac{\pi}{2}-x\right)^3}{3} as I did in my solution......

Aaghaz Mahajan - 2 years, 2 months ago

Log in to reply

Thanks a lot. I didn't realize that.

Chew-Seong Cheong - 2 years, 2 months ago

Log in to reply

Sir, could you please help me out?? I have recently started writing solutions using LaTex, but they are not as tidy as yours......Any tips??? How to center the expressions or adding colours??

Aaghaz Mahajan - 2 years, 2 months ago

Log in to reply

@Aaghaz Mahajan You can use \ [ \ ] (no space between the backslash "\" and square brackets "[" and "]") instead of \ ( \ ). You will note that \int 0^\frac \pi 3, \frac \pi 2, \sum {k=0}^\infty don't turn out big size if you use () as 0 π 3 , π 2 , k = 0 \int_0^\frac \pi 3, \frac \pi 2, \sum_{k=0}^\infty . [] will give right size but it must be on its own like below.. 0 π 3 , π 2 , k = 0 \int_0^\frac \pi 3, \frac \pi 2, \sum_{k=0}^\infty If you want to have right size in () start with \displaystyle \int 0^\frac \pi 3, \frac \pi 2, sum {k=0}^\infty as in 0 π 3 , π 2 , k = 0 \displaystyle \int_0^\frac \pi 3, \frac \pi 2, \sum_{k=0}^\infty . You can also \dfrac 34 3 4 \dfrac 34 and \dbinom nk ( n k ) \dbinom nk , while \binom nk is like ( n k ) \binom nk .

Chew-Seong Cheong - 2 years, 2 months ago

Log in to reply

@Chew-Seong Cheong Showing you the LaTex code I used for my solution above.

Chew-Seong Cheong - 2 years, 2 months ago

Log in to reply

@Chew-Seong Cheong Thanks for the tips, Sir!!! I'll try to use them in my next solutions!! :)

Aaghaz Mahajan - 2 years, 2 months ago
Max Yuen
Jun 3, 2019

Once you realize that the definition of arcsin and arcos add up to π / 2 \pi/2 , we quickly see that the integrand is just a parabola and touches the x-axis at π / 2 \pi/2 .

There's a little trick to integrating powers of x x . If you integrate x 2 x^2 from 0 to 1, it gives you 1/3. For larger regions for 0 to a a , you scale up the answer by a 3 a^3 .

If you graphed the integrand, you'd notice that there are two equal areas that fit the description.

thus, the integral is just 1 / 3 × 2 × ( π 2 ) 3 = π 3 12 \displaystyle 1/3\times 2\times \left(\frac{\pi}{2}\right)^3=\frac{\pi^3}{12} .

Pepper Mint
Mar 25, 2019

arcsin ( cos x ) = π 2 x \arcsin(\cos{x})=\dfrac{\pi}{2}-x .

\text{Thus, the eq is equal to } \quad \displaystyle \int_{0}^{{\pi}{2}} {(\dfrac{\pi}{2}-x)^2}}=\dfrac{2}{3} \cdot (\dfrac{\pi}{2})^3=2.58\uparrow{3}86 \cdots =\boxed{3.584}.)

Abraham Zhang
Mar 23, 2019

0 π ( arcsin ( cos ( x ) ) ) 2 d x = 0 π ( arcsin ( sin ( π 2 x ) ) ) 2 d x = 0 π ( π 2 x ) 2 d x Since arcsin ( sin ( y ) ) = y for y [ π 2 , π 2 ] = π 3 12 2.58385639 \begin{aligned} \int_0^{\pi}(\arcsin(\cos(x)))^2~dx&=\int_0^{\pi}\left(\arcsin\left(\sin\left(\frac{\pi}2-x\right)\right)\right)^2~dx\\ &=\int_0^\pi\left(\frac{\pi}2-x\right)^2~dx\hspace{50pt}\text{Since }\arcsin(\sin(y))=y\text{ for }y\in\left[-\frac{\pi}2,\frac{\pi}2\right]\\ &=\frac{\pi^3}{12}\\ &\approx2.58385639 \end{aligned}

Panshul Rastogi
Mar 23, 2019

I don't think this question deserves Level4 in calculus.

sin 1 ( cos ( x ) ) 2 d x 1 3 sin 2 ( x ) csc ( x ) sin 1 ( cos ( x ) ) 3 \int \sin ^{-1}(\cos (x))^2 \, dx \Rightarrow -\frac{1}{3} \sqrt{\sin ^2(x)} \csc (x) \sin ^{-1}(\cos (x))^3 which gives π 3 12 \frac{\pi ^3}{12} as a result.

Wesley Low
Mar 21, 2019

Because arcsin ( cos ( x ) ) 2 { \arcsin { \left( \cos { \left( x \right) } \right) } }^{ 2 } is symmetrical about π / 2 {\pi }/{ 2 } , the integral expression can be rewritten as

2 0 π 2 arcsin ( cos ( x ) ) 2 d x 2\int _{ 0 }^{ \frac { \pi }{ 2 } }{ { \arcsin { \left( \cos { \left( x \right) } \right) } }^{ 2 } } dx

Using the property that a b f ( x ) d x = a b f ( a + b x ) d x \int _{ a }^{ b }{ f\left( x \right) } dx=\int _{ a }^{ b }{ f\left( a+b-x \right) } dx , the integral becomes

2 0 π 2 arcsin ( sin ( x ) ) 2 d x 2\int _{ 0 }^{ \frac { \pi }{ 2 } }{ { \arcsin { \left( \sin { \left( x \right) } \right) } }^{ 2 } } dx = 2 0 π 2 x 2 d x =2\int _{ 0 }^{ \frac { \pi }{ 2 } }{ { x }^{ 2 } } dx = π 3 12 =\frac { { \pi }^{ 3 } }{ 12 } 2.58385639 \approx 2.58385639

Wow we both wrote nearly the same solution....

Rohan Shinde - 2 years, 2 months ago

Log in to reply

Yup! It's cool to see that!

Wesley Low - 2 years, 2 months ago

I'd be careful with the re-write of the integral. That's not something that's true in general - it just happens to work for this function and these bounds.

Richard Desper - 2 years, 2 months ago
Krishna Karthik
Mar 21, 2019

I just numerically integrated using the midpoint rule with 9999 rectangles. Here is my code in Python 3:

https://repl.it/@PhysicsAndMath/Numerical-integration-Midpoint-Rule

If you enter the bounds of integration (pi,0) and set it to maximum accuracy (9999 rectangles), you will get the answer.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...