Inte-greater!

Calculus Level 4

π / 6 π / 6 sin x sin x cos x d x = π A + 1 2 ln ( B C ) \large \int _{ - \pi / 6 }^{ \pi / 6 }{ \cfrac { \sin x }{ \sin x - \cos x } } \, dx = \, \dfrac{\pi}{A} + \dfrac{1}{2} \, \ln (B-\sqrt C )

Given A A , B B and C C are positive integers satisfying the equation above, find A + B + C A+B+C .


The answer is 11.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

5 solutions

Rishabh Jain
Jul 10, 2016

Relevant wiki: Integration Tricks

Write numerator as 1 2 2 sin x = 1 2 ( ( sin x cos x ) + ( sin x + cos x ) ) \small{\frac 12\cdot 2\sin x=\frac 12\left((\sin x-\cos x)+(\sin x+\cos x)\right)} so that integration ( I ) (\mathfrak I) is:

I = 1 2 π / 6 π / 6 ( 1 + sin x + cos x d ( sin x cos x ) sin x cos x ) d x \mathfrak I=\dfrac 12\displaystyle\int _{ - \pi / 6 }^{ \pi / 6 }\left(1+\dfrac{\overbrace{\sin x+\cos x}^{\mathrm{d}(\sin x-\cos x)}}{\sin x-\cos x}\right)\mathrm{d}x

= π 6 + [ 1 2 ln sin x cos x ] π / 6 π / 6 =\dfrac{\pi}{6}+\left[\dfrac{1}2\ln|\sin x-\cos x|\right] _{ - \pi / 6 }^{ \pi / 6 }

= π 6 + 1 2 ln ( 2 3 ) =\frac \pi 6 + \frac 12 \ln \left(2-\sqrt 3\right)

Hence, 6 + 2 + 3 = 11 \Large 6+2+3=\boxed{11}

Same solution

Vignesh S - 4 years, 11 months ago

Log in to reply

Great... :-)

Rishabh Jain - 4 years, 11 months ago

Log in to reply

You said you'll come after JEE ADVANCED

Vignesh S - 4 years, 11 months ago

Log in to reply

@Vignesh S Now its not of much use since I'll be leaving brilliant in a short time. :-)

Rishabh Jain - 4 years, 11 months ago

Log in to reply

@Rishabh Jain OK... but you can still contribute when you have time

Vignesh S - 4 years, 11 months ago

Log in to reply

@Vignesh S Ya... Surely I will.. :-)

Rishabh Jain - 4 years, 11 months ago

Why are you not in slack?

Vignesh S - 4 years, 11 months ago

I = π 6 π 6 sin x sin x cos x d x By a b f ( x ) d x = a b f ( a + b x ) d x = π 6 π 6 sin ( x ) sin ( x ) cos ( x ) d x = π 6 π 6 sin x sin x + cos x d x 2 I = π 6 π 6 sin x sin x cos x d x + π 6 π 6 sin x sin x + cos x d x = π 6 π 6 sin x ( sin x + cos x + sin x cos x ) sin 2 x cos 2 x d x = π 6 π 6 2 sin 2 x sin 2 x cos 2 x d x = π 6 π 6 1 cos 2 x cos 2 x d x = π 6 π 6 ( 1 sec 2 x ) d x = x π 6 π 6 2 0 π 6 sec 2 x d x = π 3 2 × 1 2 ln ( tan 2 x + sec 2 x ) 0 π 6 = π 3 ln ( 3 + 2 ) + ln ( 0 + 1 ) = π 3 + ln ( 1 3 + 2 ) = π 3 + ln ( 2 3 ) I = π 6 + 1 2 ln ( 2 3 ) \begin{aligned} I & = \int_{-\frac \pi 6}^\frac \pi 6 \frac {\sin x}{\sin x - \cos x} dx & \small \color{#3D99F6}{\text{By }\int_a^b f(x) \ dx = \int_a^b f(a+b-x) \ dx } \\ & = \int_{-\frac \pi 6}^\frac \pi 6 \frac {\sin (-x)}{\sin (-x) - \cos (-x)} dx \\ & = \int_{-\frac \pi 6}^\frac \pi 6 \frac {\sin x}{\sin x + \cos x} dx \\ \implies 2I & = \int_{-\frac \pi 6}^\frac \pi 6 \frac {\sin x}{\sin x - \cos x} dx + \int_{-\frac \pi 6}^\frac \pi 6 \frac {\sin x}{\sin x + \cos x} dx \\ & = \int_{-\frac \pi 6}^\frac \pi 6 \frac {\sin x(\sin x + \cos x + \sin x - \cos x)}{\sin^2 x - \cos^2 x} dx \\ & = \int_{-\frac \pi 6}^\frac \pi 6 \frac {2\sin^2 x}{\sin^2 x - \cos^2 x} dx \\ & = \int_{-\frac \pi 6}^\frac \pi 6 \frac {1-\cos 2x}{-\cos 2x} dx \\ & = \int_{-\frac \pi 6}^\frac \pi 6 (1-\sec 2x) \ dx \\ & = x \bigg|_{-\frac \pi 6}^\frac \pi 6 - 2\int_0^\frac \pi 6 \sec 2x \ dx \\ & = \frac \pi 3 - 2\times \frac 12 \ln (\tan 2x + \sec 2x) \ \bigg|_0^\frac \pi 6 \\ & = \frac \pi 3 - \ln (\sqrt 3 + 2) + \ln (0+1) \\ & = \frac \pi 3 + \ln \left(\frac 1{\sqrt 3 + 2}\right) \\ & = \frac \pi 3 + \ln \left(2-\sqrt 3\right) \\ \implies I & = \frac \pi 6 + \frac 12 \ln \left(2-\sqrt 3\right)\end{aligned}

A + B + C = 6 + 2 + 3 = 11 \implies A+B+C = 6+2+3 = \boxed{11}

You could also do the standard tangent half angle substitution.

Zach Star - 4 years, 11 months ago

Great solution! : ) :)

Michael Fuller - 4 years, 11 months ago

The theorem highlighted in blue, what theorem is that?

Hung Woei Neoh - 4 years, 11 months ago

Log in to reply

I learned it in Brilliant. Anyway, you can derive it by letting y = a + b x y = a+b-x . Try it.

Chew-Seong Cheong - 4 years, 11 months ago
Noah Hunter
Jul 9, 2016

I don't know how to do this in LaTeX but A + B + C = 6 + 2 + 3 = 11 A + B + C = 6 + 2 + 3 = 11

Rahul Malhotra
Jul 10, 2016

Numerator can be rewritten as 0.5(sinx-cosx)+0.5(sinx+cosx) split the denominator and use small substitution to find answer orally

Atharva Sarage
Jul 10, 2016

split into interval -pi/6 to 0 and 0 to pi/6 . Then after basic manipulation we get 2sin^2 x in num and -cos2x in denominator .Add and subtract cos^2 x in numerator

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...