Exponentially Powerful Integral

Calculus Level 3

If S = 3 27 n n 2 + 1 d n \displaystyle S = \int_3^{27} \dfrac n{n^2 + 1} \, dn , find e 4 S e^{4S } .


The answer is 5329.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Rishabh Jain
Feb 13, 2016

S = 1 2 3 27 d ( n 2 + 1 ) n 2 + 1 \Large \mathcal{S}= \dfrac{1}{2} \int_{3}^{27} \dfrac{d(n^2+1)}{n^2+1} = 1 2 ( ln ( n 2 + 1 ) 3 27 ) \Large =\dfrac{1}{2}( \ln (n^2+1)|_{\small{3}}^{\small{27}}) = 1 2 ( ln ( 73 ) ) \Large =\dfrac{1}{2}(\ln (73)) e 4 S = e 2 ln 73 = e ln ( 73 ) 2 = 7 3 2 \Large \therefore e^{4\mathcal{S}}=e^{2\ln 73}=e^{\ln (73)^2}=73^2~~~ = 5329 ~~~~~~=\huge\boxed{\color{#007fff}{5329}}

e ln 73 2 ( e l n 73 ) 2 = 5329 { e }^{ { \ln { 73 } }^{ 2 } }\neq { \left( { e }^{ ln73 } \right) }^{ 2 }\\=5329

Please do the amends

Joel Yip - 5 years, 4 months ago

Log in to reply

So what I have to correct?? Or correction made??

Rishabh Jain - 5 years, 3 months ago

Log in to reply

change it to ( e l n 73 ) 2 { \left( { e }^{ ln73 } \right) }^{ 2 }

Joel Yip - 5 years, 3 months ago

Log in to reply

@Joel Yip Why ?? Isn't it correct in the form I have written??

Rishabh Jain - 5 years, 3 months ago

Log in to reply

@Rishabh Jain e ln 73 2 = 9.8744 × 10 7 { e }^{ { \ln { 73 } }^{ 2 } }=9.8744\times { 10 }^{ 7 }

Joel Yip - 5 years, 3 months ago

@Rishabh Jain Put brackets

Joel Yip - 5 years, 3 months ago

Rishabh Cool

Joel Yip - 5 years, 3 months ago

@Rishabh Cool

Joel Yip - 5 years, 3 months ago

nice one........................

Ramiel To-ong - 4 years ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...