Integral of The Rational Function

Calculus Level 3

Given

0 1 x 3 + x + 2 x 4 + 2 x 2 + 1 d x = p q + r π s + ln t u , \int_0^1 \frac{x^3+x+2}{x^4+2x^2+1}dx=\frac{p}{q}+\frac{r\pi}{s}+\frac{\ln t}{u},

where t \,t and u \,u are perfect squares. Find p + q + r + s + t + u \,p+q+r+s+t+u .


The answer is 16.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Tunk-Fey Ariawan
Mar 20, 2014

Divide the integral into two parts as the following: x 3 + x + 2 x 4 + 2 x 2 + 1 d x = x 3 + x x 4 + 2 x 2 + 1 d x + 2 x 4 + 2 x 2 + 1 d x = x 3 + x x 4 + 2 x 2 + 1 d x + 2 ( x 2 + 1 ) 2 d x . \begin{aligned} \int\frac{x^3+x+2}{x^4+2x^2+1}dx&=\int\frac{x^3+x}{x^4+2x^2+1}dx+\int\frac{2}{x^4+2x^2+1}dx\\ &=\int\frac{x^3+x}{x^4+2x^2+1}dx+\int\frac{2}{(x^2+1)^2}dx. \end{aligned} In the RHS part, for the left integral uses substitution u = x 4 + 2 x 2 + 1 d u = 4 ( x 3 + x ) d x u=x^4+2x^2+1\;\Rightarrow\;du=4(x^3+x)\,dx and for the right integral uses substitution x = tan θ d x = sec 2 θ d θ x=\tan\theta\;\Rightarrow\;dx=\sec^2\theta\;d\theta . Therefore x 3 + x + 2 x 4 + 2 x 2 + 1 d x = 1 4 u d u + 2 sec 2 θ ( tan 2 θ + 1 ) 2 d θ = 1 4 ln u + C + 2 sec 2 θ sec 4 θ d θ = 1 4 ln x 4 + 2 x 2 + 1 + 2 cos 2 θ d θ + C = 1 4 ln x 4 + 2 x 2 + 1 + 2 1 + cos 2 θ 2 d θ + C = 1 4 ln x 4 + 2 x 2 + 1 + ( 1 + cos 2 θ ) d θ + C \begin{aligned} \int\frac{x^3+x+2}{x^4+2x^2+1}dx&=\int\frac{1}{4u}du+\int\frac{2\sec^2\theta}{(\tan^2\theta+1)^2}d\theta\\ &=\frac{1}{4}\ln\,|u|+\text{C}+2\int\frac{\sec^2\theta}{\sec^4\theta}d\theta\\ &=\frac{1}{4}\ln\,\left|x^4+2x^2+1\right|+2\int\cos^2\theta\;d\theta+\text{C}\\ &=\frac{1}{4}\ln\,\left|x^4+2x^2+1\right|+2\int\frac{1+\cos2\theta}{2}d\theta+\text{C}\\ &=\frac{1}{4}\ln\,\left|x^4+2x^2+1\right|+\int(1+\cos2\theta)\;d\theta+\text{C}\\ \end{aligned} The rest should be easy to be solved and I leave to you as an exercise. #LOL


# Q . E . D . # \text{\# }\mathbb{Q.E.D.}\text{ \#}

I got the same indefinite integral but I am not sure why my answer is marked incorrect.

Continuing with where you left,

( 1 4 ln x 4 + 2 x 2 + 1 0 1 + 0 π / 4 ( 1 + cos ( 2 θ ) ) d θ \left(\frac{1}{4}\ln|x^4+2x^2+1|\right|_0^1+\int_0^{\pi/4}(1+\cos(2\theta))\,d\theta

= 1 4 ln ( 4 ) + π 4 + 1 2 =\frac{1}{4}\ln(4)+\frac{\pi}{4}+\frac{1}{2}

= 1 2 ln ( 2 ) + π 4 + 1 2 =\frac{1}{2}\ln(2)+\frac{\pi}{4}+\frac{1}{2}

This gives me 12 as the answer.

Pranav Arora - 7 years, 2 months ago

Log in to reply

I'm so sorry Pranav. Your calculation is correct. That was my fault.

Tunk-Fey Ariawan - 7 years, 2 months ago

Log in to reply

Ah, that's ok. :)

I suggest editing the question such that it has a unique answer.

Pranav Arora - 7 years, 2 months ago

Log in to reply

@Pranav Arora I did. Thanks for pointing out the flaw. Once again, I'm really sorry for your loss point. :(

Tunk-Fey Ariawan - 7 years, 2 months ago
Jatin Yadav
Mar 27, 2014

Break as 0 1 x ( x 2 + 1 ) ( x 2 + 1 ) 2 d x + 0 1 1 x 2 + 1 + x 2 ( 1 + x 2 ) 2 d x \displaystyle \int_{0}^{1} \frac{x(x^2+1)}{(x^2+1)^2} dx + \int_{0}^{1} \frac{1-x^2+1+x^2}{(1+x^2)^2} dx

= 0 1 x d x x 2 + 1 + 0 1 1 1 + x 2 d x 0 1 1 1 / x 2 ( x + 1 / x ) 2 d x \displaystyle \int_{0}^{1} \frac{x dx}{x^2+1} + \int_{0}^{1} \frac{1}{1+x^2} dx - \int_{0}^{1} \frac{1 -1/x^2}{(x+1/x)^2} dx

= ln 2 2 + π 4 + 2 d t t 2 \displaystyle \frac{\ln 2}{2} + \frac{\pi}{4} + \int_{2}^{\infty} \frac{dt}{t^2} , where t = x + 1 / x t = x+1/x

Hence, I = ln 2 2 + π 4 + 1 2 I = \frac{\ln 2}{2} + \frac{\pi}{4} + \frac{1}{2}

You have to replace ln 2 2 \frac{\ln 2}{2} by ln 4 4 \frac{\ln 4}{4} so as to make t t and u u perfect squares.

Ramiel To-ong
Jan 8, 2016

very nice solution Tunk - Fey

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...