What substitution should I make?

Calculus Level 5

0 1 x + x 2 + 1 d x = A B ( 1 + C D ) \large \int_{0}^{1}\sqrt{x+\sqrt{x^2+1}} \, dx=\dfrac AB \left(1 + \sqrt{\sqrt C - D} \right)

If the equation above holds true for positive integers A , B , C A,B, C and D D such that A A and B B are coprime, find the value of A + B + C + D A+B+C+D .


The answer is 15.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Adarsh Kumar
Sep 27, 2015

Assume x + x 2 + 1 = z 1 z = x 2 + 1 x x+\sqrt{x^2+1}=z\Rightarrow \dfrac{1}{z}=\sqrt{x^2+1}-x .
Differentiating we get that, d z d x = 1 + 2 x 2 x 2 + 1 \dfrac{dz}{dx}=1+\dfrac{2x}{2\sqrt{x^2+1}} .
Note that z + 1 z = 2 x 2 + 1 and z 1 z = 2 x z+\dfrac{1}{z}=2\sqrt{x^2+1} \hspace{.3cm} \text{ and } \hspace{.3cm} z-\dfrac{1}{z}=2x

Therefore, d z d x = 1 + z 1 z z + 1 z = 1 + z 2 1 z 2 + 1 = 2 z 2 z 2 + 1 \dfrac{dz}{dx}=1+\dfrac{z-\frac{1}{z}}{z+\frac{1}{z}}=1+\dfrac{z^2-1}{z^2+1}=\dfrac{2z^2}{z^2+1} Now, after changing the limits, the integral becomes 1 1 + 2 z z 2 + 1 2 z 2 d z \int_{1}^{1+\sqrt{2}} \sqrt{z}\dfrac{z^2+1}{2z^2}dz Now, use the substitution z = y 2 z=y^2 and the the integral becomes, 1 1 + 2 2 y 2 ( y 4 + 1 ) 2 y 4 d y = 1 1 + 2 ( y 4 + 1 ) y 2 d y \int_{1}^{\sqrt{1+\sqrt{2}}}2y^2\dfrac{(y^4+1)}{2y^4}dy \\ =\int_{1}^{\sqrt{1+\sqrt{2}}}\dfrac{(y^4+1)}{y^2}dy The above integral is a trivial one from there!

Moderator note:

When presenting a solution, it is easier to convince others when the reader can take a quick glance through it. Thus, formatting (especially with the equations) really helps. In this case, I made each equation to stand on a line, which was easier to read than the previous option of having the first four sentences squashed together.

Clever and nice!

Aditya Kumar - 5 years, 8 months ago

Log in to reply

Thanks a lot!

Adarsh Kumar - 5 years, 8 months ago

Flaw in first step,
If z = x + 1 + x 2 z = x + \sqrt{1 + x^2} 1 z = x 2 + 1 x x 2 + 1 x \dfrac{1}{z} = \sqrt{x^2+1} - x \neq \sqrt{x^2+1} - x

Akhil Bansal - 5 years, 8 months ago

Log in to reply

Thanks for notifying!

Adarsh Kumar - 5 years, 8 months ago

When presenting a solution, it is easier to convince others when the reader can take a quick glance through it. Thus, formatting (especially with the equations) really helps. In this case, I made each equation to stand on a line, which was easier to read than the previous option of having the first four sentences squashed together.

Calvin Lin Staff - 5 years, 8 months ago

Log in to reply

Thanks a lot sir!Understood a lot!

Adarsh Kumar - 5 years, 8 months ago

Log in to reply

In other news, DOCTOR WHO! Season 9!

Calvin Lin Staff - 5 years, 8 months ago

Log in to reply

@Calvin Lin Yes!Do you follow it too,sir?

Adarsh Kumar - 5 years, 8 months ago

Log in to reply

@Adarsh Kumar Oh yes I do. Haven't had time to watch the 2 episodes, but I will get it to soonish.

Calvin Lin Staff - 5 years, 8 months ago

Nice solution!

Nihar Mahajan - 5 years, 4 months ago

Log in to reply

Thanks man!

Adarsh Kumar - 5 years, 4 months ago
Joe Ashour
Oct 8, 2015

w e h a v e t h e i n t e g r a l I = 0 1 x + x 2 + 1 d x r e m e m b e r t h e f u n c t i o n : sinh 1 ( x ) = ln ( x + x 2 + 1 ) 1 2 sinh 1 x = ln x + x 2 + 1 e sinh 1 x 2 = x + x 2 + 1 I = 0 1 e sinh 1 x 2 d x n o w p u t : x = sinh 2 u w h e n x = 0 u = 0 d x = 2 cosh 2 u d u x = 1 u = ln 1 + 2 I = 2 0 ln 1 + 2 e u cosh 2 u d u a n d w e h a v e cosh 2 u = e 2 u + e 2 u 2 b y s u b i n I = 0 ln 1 + 2 e 3 u + e u d u = 1 3 e u ( e 4 u 3 ) + c b y s o l v i n g w e g e t I = 2 3 ( 8 2 + 1 ) s o A + B + C + D = 2 + 3 + 8 + 2 = 15 we\quad have\quad the\quad integral\quad I\quad =\int _{ 0 }^{ 1 }{ \sqrt { x+\sqrt { { x }^{ 2 }+1 } } } dx\\ remember\quad the\quad function:\quad \sinh ^{ -1 }{ (x)=\ln { (x+\sqrt { { x }^{ 2 }+1 } ) } } \\ \therefore \quad \frac { 1 }{ 2 } \sinh ^{ -1 }{ x } =\ln { \sqrt { x+\sqrt { { x }^{ 2 }+1 } } } \\ \therefore \quad { e }^{ \frac { \sinh ^{ -1 }{ x } }{ 2 } }=\sqrt { x+\sqrt { { x }^{ 2 }+1 } } \\ \therefore \quad I\quad =\quad \int _{ 0 }^{ 1 }{ { e }^{ \frac { \sinh ^{ -1 }{ x } }{ 2 } } } dx\\ now\quad put\quad :\quad x\quad =\quad \sinh { 2u } \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad when\quad x\quad =\quad 0\quad \quad \quad \quad u\quad =\quad 0\\ \quad \quad \quad \quad \quad \quad \quad \therefore \quad dx\quad =\quad 2\cosh { 2u } du\quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad x\quad =\quad 1\quad \quad \quad \quad \quad \quad u\quad =\quad \ln { \sqrt { 1+\sqrt { 2 } } } \\ \therefore \quad I\quad =\quad 2\int _{ 0 }^{ \ln { \sqrt { 1+\sqrt { 2 } } } }{ { e }^{ u } } \cosh { 2u } \quad du\\ and\quad we\quad have\quad \cosh { 2u } =\frac { { e }^{ 2u }+{ e }^{ -2u } }{ 2 } \\ by\quad sub\quad in\quad I\quad =\quad \int _{ 0 }^{ \ln { \sqrt { 1+\sqrt { 2 } } } }{ { e }^{ 3u } } +{ e }^{ -u }\quad du\quad =\frac { 1 }{ 3{ e }^{ u } } ({ e }^{ 4u }-3)+c\quad \\ by\quad solving\quad we\quad get\quad I\quad =\quad \frac { 2 }{ 3 } (\sqrt { \sqrt { 8 } -2 } +1)\quad so\quad A+B+C+D=2+3+8+2=15\quad \\

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...