Integration mania!

Calculus Level 5

If the value of the integral I = 0 1 log ( 3 t 2 + 4 t + 3 ) log ( 3 ( t 2 + 1 ) ) t d t I=\displaystyle\int_{0}^{1} \dfrac{\log\left({3t^2+4t+3}\right)-\log{(3(t^2+1))}}{t}dt

Is of the form

arcsin ( p q ) ( k π arcsin ( p q ) ) r \frac{\arcsin {\left(\frac{p}{q}\right)}\left(k\pi-\arcsin {\left(\frac{p}{q}\right)}\right)}{r} ,

where p p and q q are co-prime integers, then find p + q + r + k p+q+r+k .


The answer is 8.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Pratik Shastri
Jul 26, 2014

I = 0 1 log ( 3 t 2 + 4 t + 3 3 ( t 2 + 1 ) ) t d t = 0 1 log ( 1 + 2 3 2 t ( 1 + t 2 ) ) 2 t 1 + t 2 2 d t 1 + t 2 \begin{aligned} I &=\displaystyle\int_{0}^{1}\dfrac{\log {\left(\frac{3t^2+4t+3}{3(t^2+1)}\right)}}{t}dt\\ &=\displaystyle\int_{0}^{1}\dfrac{\log{\left(1+\frac{2}{3}\frac{2t}{(1+t^2)}\right)}}{\frac{2t}{1+t^2}}\frac{2dt}{1+t^2} \end{aligned}

Now doing the substitution t = tan ( x 2 ) \text{Now doing the substitution} \ t=\tan{\left(\dfrac{x}{2}\right)} ,

The integral becomes \text{The integral becomes} I = 0 π / 2 log ( 1 + 2 3 sin x ) sin x d x I=\displaystyle\int_{0}^{\pi/2}\dfrac{\log {\left(1+\frac{2}{3}\sin x\right)}}{\sin x}dx .

Consider \text{Consider} f ( a ) = 0 π / 2 log ( 1 + sin a sin x ) sin x d x , a [ 0 , π 2 ] f(a)=\displaystyle\int_{0}^{\pi/2}\dfrac{\log ({1+\sin {a} \sin {x}})}{\sin x} dx \ , \ \ \ \ a \in \left[0,\frac{\pi}{2}\right] .

Using the \text{Using the} Leibniz integral rule and differentiating under the integral sign, \text{and differentiating under the integral sign,} f ( a ) = 0 π / 2 1 sin x 1 1 + sin x sin a cos a sin x d x = cos a 0 π / 2 d x 1 + sin a sin x \begin{aligned} f'(a)&=\displaystyle\int_{0}^{\pi/2} \dfrac{1}{\sin x} \dfrac{1}{1+\sin x \sin a}\cos a \sin x dx \\ &=\cos a\displaystyle\int_{0}^{\pi/2} \dfrac{dx}{1+\sin a \sin x} \end{aligned}

Substituting tan x 2 = t \text{Substituting} \ \tan {\frac{x}{2}}=t ,

f ( a ) = cos a 0 1 2 d t 1 + t 2 1 + sin a 2 t 1 + t 2 = 2 cos a 0 1 d t ( sin a + t ) 2 + cos 2 a = 2 cos a 1 cos a [ arctan ( t + sin a cos a ) ] 0 1 Now, cos a = cos a , a [ 0 , π 2 ] \begin{aligned} f'(a) &= \cos a \displaystyle\int_{0}^{1} \dfrac{\frac{2dt}{1+t^2}}{1+\sin a\frac{2t}{1+t^2}}\\ &=2\cos a \displaystyle\int_{0}^{1} \dfrac{dt}{(\sin a + t)^2+\cos^2 a}\\ &=2\cos a \dfrac{1}{|\cos a|} \left[\arctan {\left(\dfrac{t+\sin a}{|\cos a|}\right)}\right]_0^1 \\ \text{Now,} \ |\cos a|=\cos a, \ \because \ \ a \in \left[0,\dfrac{\pi}{2}\right]\\ \end{aligned} f ( a ) = 2 ( arctan ( 1 + sin a cos a ) arctan ( tan a ) ) f ( a ) = 2 ( arctan ( tan ( a 2 + π 4 ) ) + arctan ( tan a ) ) So, because a [ 0 , π 2 ] , f ( a ) = 2 ( π 4 a 2 ) f ( a ) = 1 2 ( π a a 2 ) + C \begin{aligned} \therefore f'(a) &=2\left(\arctan {\left(\dfrac{1+\sin a}{\cos a}\right)}-\arctan {(\tan a)}\right)\\ f'(a) &=2\left(\arctan {\left( \tan {\left(\dfrac{a}{2}+\dfrac{\pi}{4}\right)}\right)}+\arctan {(\tan a)}\right)\\ \text{So, because} \ \ a \in \left[0,\frac{\pi}{2}\right],\\ f'(a) &= 2\left(\dfrac{\pi}{4}-\dfrac{a}{2}\right)\\ \therefore f(a) &=\dfrac{1}{2}(\pi a-a^2)+C \end{aligned}

We see, by plugging a = 0 into f ( a ) , that C = 0. \text{We see, by plugging} \ a=0 \ \text{into} \ f(a), \ \text{that} \ C=0.

f ( a ) = 1 2 ( π a a 2 ) \therefore f(a) =\dfrac{1}{2}(\pi a-a^2)

Now, all we need to do is find I \text{Now, all we need to do is find} \ I .

I = f ( arcsin 2 3 ) = arcsin 2 3 ( π arcsin 2 3 ) 2 So, p + q + r + k = 8 \begin{aligned} I &= f\left(\arcsin {\dfrac{2}{3}}\right)\\ &=\dfrac{\arcsin {\dfrac{2}{3}}\left(\pi-\arcsin {\dfrac{2}{3}}\right)}{2}\\ \text{So,} \ \ \ \Large\color{#D61F06}{p+q+r+k=8} \end{aligned}


Q u o d E r a t D e m o n s t r a n d u m \Huge\color{#3D99F6}{\mathbb{Quod \ Erat \ Demonstrandum}}

is there any easy way to solve this???

Hermon Masih - 6 years, 9 months ago

Log in to reply

I do not know..I fear there mayn't be one..

Pratik Shastri - 6 years, 9 months ago
Karthik Kannan
Aug 30, 2014

Let the value of the required integral be I I . Now replacing t t by 1 t \dfrac{1}{t} we get:

I = 1 ln ( 3 t 2 + 4 t + 3 ) ln ( 3 t 2 + 3 ) t d t I=\displaystyle\int_{1}^{\infty} \frac{\ln (3t^{2}+4t+3)-\ln (3t^{2}+3)}{t}\text{ }\text{d}t

Thus 2 I = 0 ln ( 3 t 2 + 4 t + 3 ) ln ( 3 t 2 + 3 ) t d t 2I=\displaystyle\int_{0}^{\infty} \frac{\ln (3t^{2}+4t+3)-\ln (3t^{2}+3)}{t}\text{ }\text{d}t (As the integrand is continuous as at t = 1 t=1 )

Now consider the integral

I ( k ) = 0 ln ( 3 t 2 + k t + 3 ) ln ( 3 t 2 + 3 ) t d t \mathfrak{I}(k)=\displaystyle\int_{0}^{\infty} \frac{\ln (3t^{2}+kt+3)-\ln (3t^{2}+3)}{t}\text{ }\text{d}t

Differentiating w.r.t. k k :

I ( k ) = 0 1 3 t 2 + k t + 3 d t \mathfrak{I}'(k)=\displaystyle\int_{0}^{\infty} \frac{1}{3t^{2}+kt+3}\text{ }\text{d}t

I ( k ) = 1 3 0 1 ( t + k 6 ) 2 + 1 k 2 36 d t \therefore\mathfrak{I}'(k)=\dfrac{1}{3}\displaystyle\int_{0}^{\infty} \frac{1}{\left(t+\frac{k}{6}\right)^{2}+1-\frac{k^{2}}{36}}\text{ }\text{d}t

As k = 4 < 6 k=4<6 , 1 k 2 36 > 0 1-\dfrac{k^{2}}{36}>0 .

Thus I ( k ) = 2 36 k 2 ( π 2 arctan ( k 36 k 2 ) ) \mathfrak{I}'(k)=\dfrac{2}{\sqrt{36-k^{2}}}\left(\dfrac{\pi}{2}-\arctan \left( \dfrac{k}{\sqrt{36-k^{2}}}\right)\right)

Thus I ( 4 ) I ( 0 ) = 2 ( π 2 arcsin ( 2 3 ) 0 4 1 36 k 2 arcsin ( k 6 ) d k ) \mathfrak{I}(4)-\mathfrak{I}(0)=2\bigg( \dfrac{\pi}{2}\arcsin \left(\dfrac{2}{3}\right)-\displaystyle\int_{0}^{4}\frac{1}{\sqrt{36-k^{2}}}\arcsin \left(\frac{k}{6}\right)\text{ }\text{d}k\bigg)

Note that arctan ( k 36 k 2 ) = arcsin ( k 6 ) \arctan \left( \dfrac{k}{\sqrt{36-k^{2}}}\right)=\arcsin \left(\dfrac{k}{6}\right) .Further note that I ( 0 ) = 0 \mathfrak{I}(0)=0 .

Now the integral above is easy to evaluate. Substitute arcsin ( k 6 ) = y \arcsin \left(\dfrac{k}{6}\right)=y to obtain:

I ( 4 ) = 2 arcsin ( 2 3 ) ( π arcsin ( 2 3 ) ) 2 \mathfrak{I}(4)=2\dfrac{\arcsin \left(\frac{2}{3}\right)\left(\pi-\arcsin \left(\frac{2}{3}\right)\right)}{2}

Also note that I = 1 2 I ( 4 ) I=\dfrac{1}{2}\mathfrak{I}(4)

Thus I = arcsin ( 2 3 ) ( π arcsin ( 2 3 ) ) 2 I=\boxed{\dfrac{\arcsin \left(\frac{2}{3}\right)\left(\pi-\arcsin \left(\frac{2}{3}\right)\right)}{2}}

Your method seems work but it's totally wrong because we have a convergence issue here. To use Feynman's way, our parameter integral must converge but your parameter integral diverges. I ( k ) = 0 ln ( 3 t 2 + k t + 3 ) t d t \mathfrak{I}(k)=\int_0^\infty\frac{\ln(3t^2+kt+3)}{t}\,dt\to\infty for k 0 k\ge0 .

It means you cannot use your I ( k ) \mathfrak{I}(k) to apply the Feynman's way. Choose suitable parameter integral, for instance I ( k ) = 0 ln ( 3 t 2 + k t + 3 ) ln ( 3 t 2 + 3 ) t d t \mathfrak{I}(k)=\int_0^\infty\frac{\ln(3t^2+kt+3)-\ln(3t^2+3)}{t}\,dt works for k 0 k\ge0 .

Anastasiya Romanova - 6 years, 9 months ago

Log in to reply

I ( k ) \mathfrak{I}(k) may diverge but I have found I ( 4 ) I ( 0 ) \mathfrak{I}(4)-\mathfrak{I}(0) which is finite. So haven't I done the same thing as you but written in a different way? Forgive me if my reasoning is incorrect.

Karthik Kannan - 6 years, 9 months ago

Log in to reply

One of many justification of Feynman's way is Dominated Convergence Theorem, therefore you must have the appropriate dominating function, but your parametric integral doesn't fulfill this criterion. A counter example for your reasoning, suppose that we want to evaluate 0 1 x 5 1 ln x d x \int_0^1\frac{x^5-1}{\ln x}\,dx Of course our parametric integral is I ( k ) = 0 1 x k 1 ln x d x \mathfrak{I}(k)=\int_0^1\frac{x^k-1}{\ln x}\,dx NOT I ( k ) = 0 1 x k ln x d x \mathfrak{I}(k)=\int_0^1\frac{x^k}{\ln x}\,dx Although I ( 5 ) I ( 0 ) = 0 1 x 5 1 ln x d x \mathfrak{I}(5)-\mathfrak{I}(0)=\int_0^1\frac{x^5-1}{\ln x}\,dx but I ( k ) = 0 1 x k ln x d x \mathfrak{I}(k)=\int_0^1\frac{x^k}{\ln x}\,dx diverges.

Anastasiya Romanova - 6 years, 9 months ago

Log in to reply

@Anastasiya Romanova Thank you for pointing out the error in my solution. I have edited it.

Karthik Kannan - 6 years, 9 months ago

Log in to reply

@Karthik Kannan I think it would be better if you find the general form of I ( k ) \mathfrak{I}(k) rather than using I ( 4 ) I ( 0 ) \mathfrak{I}(4)-\mathfrak{I}(0) . It can be done by using integration by parts and notice that arcsin ( k 6 ) = arctan ( k 36 k 2 ) \arcsin\left(\frac{k}{6}\right)=\arctan\left(\frac{k}{\sqrt{36-k^2}}\right) . The constant of integration can be found by using the fact I ( 0 ) = 0 \mathfrak{I}(0)=0 . Anyway, +1 for you solution. (>‿◠)✌

Anastasiya Romanova - 6 years, 9 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...