Interesting Inequality 2

Algebra Level 3

Find the minimum value of

4 ( x 2 + y 2 + z 2 + w 2 ) + ( x y 7 ) 2 + ( y z 7 ) 2 + ( z w 7 ) 2 + ( w x 7 ) 2 4(x^2+y^2+z^2+w^2)+(xy-7)^2+(yz-7)^2+(zw-7)^2+(wx-7)^2

as x x , y y , z z , and w w range over all real numbers.


The answer is 96.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

5 solutions

Mark Hennings
Apr 29, 2020

The expression can be rewritten as 2 [ ( x y ) 2 + ( y z ) 2 + ( z w ) 2 + ( w x ) 2 ] + ( x y 5 ) 2 + ( y z 5 ) 2 + ( z w 5 ) 2 + ( w x 5 ) 2 + 96 2\big[(x-y)^2 + (y-z)^2 + (z-w)^2 + (w-x)^2\big] + (xy-5)^2 + (yz-5)^2 + (zw-5)^2 + (wx-5)^2 + 96 and hence the minimum value is 96 \boxed{96} , achieved when x = y = z = w = 5 x=y=z=w=\sqrt{5} .

@Mark Hennings Sir can we parametrise Ellipsoid. What will be its elemental area by taking a patch d A dA ?? Please

A Former Brilliant Member - 1 year, 1 month ago

Log in to reply

If we parametrize the ellipsoid as follows r = ( a cos θ b sin θ cos ϕ c sin θ sin ϕ ) \mathbf{r} \; =\; \left(\begin{array}{c} a \cos\theta \\ b\sin\theta \cos\phi \\ c \sin\theta \sin\phi \end{array}\right) then the infinitesimal normal area vector is d A = r θ × r ϕ d θ d ϕ = ( b c cos θ a c sin θ cos ϕ a b sin θ sin ϕ ) sin θ d θ d ϕ d\mathbf{A} \; = \; \frac{\partial \mathbf{r}}{\partial \theta} \times \frac{\partial \mathbf{r}}{\partial \phi} d\theta\,d\phi \; = \; \left(\begin{array}{c} bc \cos\theta \\ ac\sin\theta\cos\phi \\ ab\sin\theta \sin\phi \end{array}\right)\sin\theta\,d\theta\,d\phi so the scalar infinitesimal area element is d A = b 2 c 2 cos 2 θ + a 2 c 2 sin 2 θ cos 2 ϕ + a 2 b 2 sin 2 θ sin 2 ϕ sin θ d θ d ϕ dA \; = \; \sqrt{b^2c^2\cos^2\theta + a^2c^2\sin^2\theta\cos^2\phi + a^2b^2\sin^2\theta\sin^2\phi}\sin\theta\,d\theta\,d\phi

Mark Hennings - 1 year, 1 month ago

Log in to reply

@Mark Hennings Thank you so much Sir . Can you find velocity as function of time in this question V ( t ) V(t) Thanks in advance!

A Former Brilliant Member - 1 year, 1 month ago

Log in to reply

@A Former Brilliant Member Assuming B , R , , m B,R,\ell,m are all constants, we can eliminate I I from these equations, obtaining m L v ¨ + m R v ˙ + B 2 2 v = m g R mL \ddot{v} + mR\dot{v} + B^2\ell^2v \; = \; mgR Obviously the particular integral is m g R B 2 2 \frac{mgR}{B^2\ell^2} , but the exact form of the complementary function depends on the relative values of B , R , , m B,R,\ell,m .

Mark Hennings - 1 year, 1 month ago

Log in to reply

@Mark Hennings @Mark Hennings Yes sir, B , R , l , m B, R, l, m all are constant. I have also reached to that differential equation but can't able to solve.

A Former Brilliant Member - 1 year, 1 month ago

Log in to reply

@A Former Brilliant Member You need to solve for the complementary function, solving the homogeneous DE with 0 on the RHS. This equation has solutions of the form e u t e^{ut} provided that m L u 2 + m R u + B 2 2 = 0 mLu^2 + mR u + B^2\ell^2=0 Depending on the values of B , R , m , B,R,m,\ell , there may be real or complex roots, which will alter the possible behaviour of v v with time.

Look up how to solve second order DEs with constant coefficients. The process of hunting for the complementary function and the particular is standard theory.

Mark Hennings - 1 year, 1 month ago

Log in to reply

@Mark Hennings @Mark Hennings Sir I searched its standard result from everywhere as I can but didn't get. Can you search and provide me standard result ? I will be very grateful. Thanks in advance!

A Former Brilliant Member - 1 year, 1 month ago
Chew-Seong Cheong
Apr 29, 2020

X = 4 ( x 2 + y 2 + z 2 + w 2 ) + ( x y 7 ) 2 + ( y z 7 ) 2 + ( z w 7 ) 2 + ( w x 7 ) 2 By AM-GM inequality 16 x 2 y 2 z 2 w 2 4 + ( x y 7 + y z 7 + z w 7 + w x 7 ) 2 4 By Titu’s lemma 16 x y z w + ( x y + y z + z w + w x 28 ) 2 4 By AM-GM inequality 16 x y z w + ( 4 x y z w 28 ) 2 4 Equality when x = y = z = w = 5 = 16 × 5 + ( 4 × 5 28 ) 2 4 = 96 \begin{aligned} X & = \blue{4(x^2+y^2+z^2+w^2)} + \red{(xy-7)^2 + (yz-7)^2 + (zw-7)^2 + (wx-7)^2} & \small \blue{\text{By AM-GM inequality}} \\ & \ge \blue{16\sqrt[4]{x^2y^2z^2w^2}} + \red{\frac {(xy-7+yz-7+zw-7+wx-7)^2}4} & \small \red{\text{By Titu's lemma}} \\ & \ge 16\sqrt{xyzw} + \frac {(\red{xy+yz+zw+wx}-28)^2}4 & \small \red{\text{By AM-GM inequality}} \\ & \ge 16\sqrt{xyzw} + \frac {(\red{4\sqrt{xyzw}}-28)^2}4 & \small \blue{\text{Equality when }x=y=z=w=\sqrt 5} \\ & = 16 \times 5 + \frac {(4\times 5-28)^2}4 \\ & = \boxed{96} \end{aligned}


References:

Yuriy Kazakov
Apr 24, 2021

f ( x , y , z , w ) = 4 ( x 2 + y 2 + z 2 + w 2 ) + ( x y 7 ) 2 + ( x z 7 ) 2 + ( z w 7 ) 2 + ( x w 7 ) 2 f(x,y,z,w)=4(x^2+y^2+z^2+w^2)+(xy-7)^2+(xz-7)^2+(zw-7)^2+(xw-7)^2 Solve system

f x = x ( 8 + 2 y 2 + 2 w 2 ) 14 ( w + y ) = 0 f_x=x(8+2y^2+2w^2)-14(w+y)=0

f y = y ( 8 + 2 x 2 + 2 z 2 ) 14 ( x + z ) = 0 f_y=y(8+2x^2+2z^2)-14(x+z)=0

f z = z ( 8 + 2 y 2 + 2 w 2 ) 14 ( w + y ) = 0 f_z=z(8+2y^2+2w^2)-14(w+y)=0

f w = w ( 8 + 2 x 2 + 2 z 2 ) 14 ( x + z ) = 0 f_w=w(8+2x^2+2z^2)-14(x+z)=0

Find

x = 7 ( w + y ) 4 + y 2 + w 2 x=\frac {7(w+y)}{4+y^2+w^2}

y = 7 ( x + z ) 4 + x 2 + z 2 y=\frac {7(x+z)}{4+x^2+z^2}

z = 7 ( w + y ) 4 + y 2 + w 2 z=\frac {7(w+y)}{4+y^2+w^2}

w = 7 ( x + z ) 4 + x 2 + z 2 w=\frac {7(x+z)}{4+x^2+z^2}

From here we see x = z x=z and y = w y=w and m i n f ( x , y , z , w ) = m i n f ( x , y , x , y ) = m i n g ( x , y ) min f(x,y,z,w)=min f(x,y,x,y)= min g(x,y)

g ( x , y ) = 8 ( x 2 + y 2 ) + 4 ( x y 7 ) 2 g(x,y)=8(x^2+y^2)+4(xy-7)^2

Solve system

g x = 16 x + 8 ( x y 7 ) y = 0 g_x=16x+8(xy-7)y=0

g y = 16 y + 8 ( x y 7 ) x = 0 g_y=16y+8(xy-7)x=0

we find

  1. x = 5 , y = 5 x=-\sqrt{5}, y=-\sqrt{5}

  2. x = 5 , y = 5 x=\sqrt{5}, y=\sqrt{5}

  3. x = 0 , y = 0 x=0,y=0

And find min f ( x , y , z , w ) = 96 f(x,y,z,w)=96 .

Control

d 2 g ( x , y ) = A g x x d x 2 + B g x y d x d y + C g y y d y 2 0 d^2g(x,y)=Ag_{xx} {dx}^2+Bg_{xy}{dx dy}+Cg_{yy}{dy}^2 \geq 0 for x = 5 , y = 5 x=\sqrt{5}, y=\sqrt{5} .

R. M. S. - A. M. inequality :

4 ( x 2 + y 2 + z 2 + w 2 ) ( x + y + z + w ) 2 4(x^2+y^2+z^2+w^2)\geq (x+y+z+w)^2

( x y 7 ) 2 + ( y z 7 ) 2 + ( z w 7 ) 2 + ( w x 7 ) 2 ( ( x y 7 ) + ( y z 7 ) + ( z w 7 ) + ( w x 7 ) ) 2 4 = ( x y + y z + z w + w x 28 ) 2 4 (xy-7)^2+(yz-7)^2+(zw-7)^2+(wx-7)^2\geq \dfrac{\left ((xy-7)+(yz-7)+(zw-7)+(wx-7)\right )^2 }{4}=\dfrac{(xy+yz+zw+wx-28)^2}{4}

A. M. - G. M. inequality :

( x + y + z + w ) 2 16 x y z w (x+y+z+w)^2\geq 16\sqrt {xyzw}

x y + y z + z w + w x 4 x y z w xy+yz+zw+wx\geq 4\sqrt {xyzw}

So, 4 ( x 2 + y 2 + z 2 + w 2 ) + ( x y 7 ) 2 + ( y z 7 ) 2 + ( z w 7 ) 2 + ( w x 7 ) 2 16 x y z w + 4 ( x y z w 7 ) 2 = 4 ( x y z w 5 ) 2 + 96 96 4(x^2+y^2+z^2+w^2)+(xy-7)^2+(yz-7)^2+(zw-7)^2+(wx-7)^2\geq 16\sqrt {xyzw}+4(\sqrt {xyzw}-7)^2= 4(\sqrt {xyzw}-5)^2+96\geq 96

The equality holds when x = y = z = w x=y=z=w

Hence the required minimum of the given expression is 96 \boxed {96} .

Richard Desper
Apr 28, 2020

I'd love to see a problem like this one where the solution isn't found at some point where all the variables have the same value, but that doesn't appear to be the case here.

If we look at the line where w = x = y = z w=x=y=z we are basically trying to minimize the function f ( x ) = 16 x 2 + 4 ( x 2 7 ) 2 f(x) = 16x^2 + 4(x^2 - 7)^2 , which has a minimum at x = 5 x=\sqrt{5} , where its value is 96 96 . I did plug the 4-variable function into an Excel worksheet, where I tested the neighborhood of this point and satisfied myself that at least this was a local minimum.

I'd love to see an actual proof.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...