Undoubtedly Rational

Algebra Level 4

N = 1 + 0.02 + 0.0003 + 0.000004 + + n 10 0 n 1 + = 1.02030405 \large {\begin{aligned} N &=&1 + 0.02 + 0.0003 + 0.000004 + \cdots + \dfrac n{100^{n-1}} + \cdots \\ &=& 1.02030405\ldots\end{aligned}}

Given that N N represents an infinite arithmetic-geometric progression sum and it can be expressed as a b \dfrac ab , where a a and b b are coprime positive integers. Find a b a-b .


The answer is 199.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

5 solutions

Viki Zeta
Sep 16, 2016

Relevant wiki: Arithmetic-Geometric Progression

N = 1.02030405 N = 1 + 0.02 + 0.0003 + 0.000004 + 0.00000005 + Multiply both side by ‘100’ 100 N = 100 + 2 + 0.03 + 0.0004 + 0.000005 + Subtract it from N 100 N = 100 + 2 + 0.03 + 0.0004 + 0.000005 + (-)N = 1 0.02 0.0003 0.000004 __________________________________________ 99 N = 100 + 1 + 0.01 + 0.0001 + 0.000001 + 0.00000001 + Now, combine all of those geometric progressions 99 N = 100 + ( 1 + 0.1 + 0.0001 + 0.000001 + 0.00000001 + ) ( 1 + 0.1 + 0.0001 + 0.000001 + 0.00000001 + ) is in Geometric Progression, where a = 1, r = 1 100 Therefore, as GP tends to infinity 99 N = 100 + ( a 1 r ) 99 N = 100 + ( 1 1 1 100 ) 99 N = 100 + ( 1 100 1 100 ) 99 N = 100 + ( 100 99 ) 99 N = ( 100 × 99 ) + 100 99 99 N = ( 9900 ) + 100 99 99 N = 10 , 000 99 N = 10000 9801 Therefore the answer is 10000 - 9801 = 199 _____________________________________________________________________________________________________ Instead you can also use Arithmetico-Geometric progression. N is in AGP, where a = 1, d = 1, r = 1 100 As AGP tends to infinity N = a 1 r + d r ( 1 r ) 2 N = 1 1 1 100 + 1 × 1 100 ( 1 1 100 ) 2 N = 1 100 1 100 + 1 100 ( 100 1 100 ) 2 N = 100 99 + 100 99 × 99 N = 100 × 99 + 100 99 × 99 N = 10000 9801 Therefore, a - b = 199 N = 1.02030405\ldots \\ \color{#D61F06}{N = 1 + 0.02 + 0.0003 + 0.000004 + 0.00000005 + \ldots} \\ \text{Multiply both side by `100'} \\ \color{#3D99F6}{100N = 100 + 2 + 0.03 + 0.0004 + 0.000005 + \ldots} \\ \text{Subtract it from N} \\ \color{#3D99F6}{100N = 100 + 2 + 0.03 + 0.0004 + 0.000005 + \ldots} \\ \color{#D61F06}{\text{ (-)N =} \quad\quad - 1 - 0.02 - 0.0003 - 0.000004-\ldots} \\ \text{\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_}\\ \color{#3D99F6}{99N = 100 + 1 + 0.01 + 0.0001 + 0.000001 + 0.00000001 + \ldots}\\ \text{Now, combine all of those geometric progressions} \\ \color{#20A900}{99N = 100 + } \color{#3D99F6}{(1 + 0.1 + 0.0001 + 0.000001 + 0.00000001 + \ldots)} \\ \color{#3D99F6}{(1 + 0.1 + 0.0001 + 0.000001 + 0.00000001 + \ldots)} \text{ is in Geometric Progression, where a = 1, r = } \dfrac{1}{100} \\ \text{Therefore, as GP tends to infinity} \\ \color{#20A900}{99N = 100 + } \color{#3D99F6}{(\dfrac{a}{1-r})} \\ \color{#20A900}{99N = 100 + } \color{#3D99F6}{(\dfrac{1}{1-\dfrac{1}{100}})} \\ \color{#20A900}{99N = 100 + } \color{#3D99F6}{(\dfrac{1}{\dfrac{100 - 1}{100}})} \\ \color{#20A900}{99N = 100 + } \color{#3D99F6}{(\dfrac{100}{99})} \\ \color{#20A900}{99N = } \color{#3D99F6}{\dfrac{(100 \times 99) + 100}{99}} \\ \color{#20A900}{99N = } \color{#3D99F6}{\dfrac{(9900) + 100}{99}} \\ \color{#20A900}{99N = } \color{#3D99F6}{\dfrac{10,000}{99}} \\ \color{#3D99F6}{N} = \dfrac{10000}{9801} \\ \color{#D61F06}{\text{Therefore the answer is } \fbox{ 10000 - 9801 = 199}}\\ \text{\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_} \\ \color{#3D99F6}{\text{Instead you can also use Arithmetico-Geometric progression.}} \\ \text{N is in AGP, where a = 1, d = 1, r = }\dfrac{1}{100} \\ \text{As AGP tends to infinity} \\ \implies \color{#3D99F6}{N = \dfrac{a}{1-r} + \dfrac{dr}{(1-r)^2}} \\ \implies \color{#3D99F6}{N = \dfrac{1}{1-\dfrac{1}{100}} + \dfrac{1\times\dfrac{1}{100}}{(1-\dfrac{1}{100})^2}} \\ \implies N = \dfrac{1}{\dfrac{100 - 1}{100}} + \dfrac{\dfrac{1}{100}}{(\dfrac{100-1}{100})^2} \\ \implies N = \dfrac{100}{99} + \dfrac{100}{99 \times 99} \\ \implies N = \dfrac{100 \times 99 + 100}{99 \times 99} \\ \implies N = \dfrac{10000}{9801} \\ \color{#D61F06}{\text{Therefore, a - b = } \fbox{ 199 }}

Ayush G Rai
Sep 16, 2016

1000 N = 10.20304050...... 1 1000N=10.20304050......- - - - 1
10 N = 1020.30405060...... 2 10N=1020.30405060......- - - - 2 [Subtract 2nd from the 1st equation]
________________ \text{\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_}
990 N = 1010. 10 990 N = 1010 10 99 990N=1010.\overline{10}\Rightarrow 990N=1010\dfrac{10}{99}
Therefore N = 10000 9801 . N=\dfrac{10000}{9801}. a = 10000 a=10000 and b = 9801. b=9801. So a b = 10000 9801 = 199 . a-b=10000-9801=\boxed{199}.



Method 1 - General Method

From Binomial - Theorem , ( 1 x ) 1 = 1 + x + x 2 + x 2 + = 0 x i (1-x)^{-1} = 1+x+x^2+x^2 + \cdots = \sum_0^\infty x^i

Differentiating, d d x 0 x i = 0 i x i 1 = d d x ( 1 x ) 1 = ( 1 x ) 2 \dfrac d{dx} \sum_0^\infty x^i = \sum_0^\infty ix^{i-1} = \dfrac d{dx} (1-x)^{-1} = (1-x)^{-2}

Substituting x = 100 x=100 , N = 10 0 2 9 9 2 N = \dfrac{100^2}{99^2}

Hence a b = 100 + 99 = 199 a-b = 100+99 = \color{#3D99F6}{\boxed{199}}

Method 2 - Direct Binomial Theorem

From Binomial - Theorem , we get ( 1 x ) n = 0 ( n + r 1 r ) x r (1-x)^{-n} = \sum_0^\infty \binom{n+r-1}rx^r

Using transform r + 1 R r+1\to R ( 1 x ) n = 0 ( n + R 2 R 1 ) x R 1 (1-x)^{-n} = \sum_0^\infty \binom{n+R-2}{R-1}x^{R-1}

We need ( n + R 2 R 1 ) = R \binom{n+R-2}{R-1} = R . So n = 2 n=2

Thus we get, the required sum is N = ( 1 x ) 2 at { x = 1 100 } = 10 0 2 9 9 2 N = (1-x)^{-2}~\text{at }~\left\{x=\dfrac1{100}\right\} = \dfrac{100^2}{99^2}

Hence a b = 100 + 99 = 199 a-b = 100+99 = \color{#3D99F6}{\boxed{199}}


Binomial Theorem

( 1 + x ) n = 0 n ( n r ) x r ( 1 + x ) p / q = 1 + p 1 ! ( x q ) 1 + p ( p q ) 2 ! ( x q ) 2 + p ( p q ) ( p 2 q ) 3 ! ( x q ) 3 + ( 1 x ) p / q = 1 + p 1 ! ( x q ) 1 + p ( p + q ) 2 ! ( x q ) 2 + p ( p + q ) ( p + 2 q ) 3 ! ( x q ) 3 + Remember only this ( 1 x ) n = 1 + n 1 ! ( x 1 ) 1 + n ( n + 1 ) 2 ! ( x 1 ) 2 + n ( n + 1 ) ( n + 2 ) 3 ! ( x 1 ) 3 + = 0 ( n + r 1 r ) x r (1+x)^n = \sum_0^n \binom n r x^r\\(1+x)^{p/q} = 1 + \dfrac{p}{1!}\left(\dfrac x q\right)^1+\dfrac{p(p-q)}{2!}\left(\dfrac x q\right)^2 + \dfrac{p(p-q)(p-2q)}{3!}\left(\dfrac x q\right)^3+\cdots\\ (1-x)^{-p/q} = 1 + \dfrac{p}{1!}\left(\dfrac x q\right)^1+\dfrac{p(p+q)}{2!}\left(\dfrac x q\right)^2 + \dfrac{p(p+q)(p+2q)}{3!}\left(\dfrac x q\right)^3+\cdots\to~\text{Remember only this}\\\begin{aligned} (1-x)^{-n} &= 1 + \dfrac{n}{1!}\left(\dfrac x 1\right)^1+\dfrac{n(n+1)}{2!}\left(\dfrac x 1\right)^2 + \dfrac{n(n+1)(n+2)}{3!}\left(\dfrac x 1\right)^3+\cdots\\&= \sum_0^\infty \binom{n+r-1}r x^r\end{aligned}

Here you go, some links:

Cool! Different solution ;)

Viki Zeta - 4 years, 8 months ago

Log in to reply

Thanks! :)

Kishore S. Shenoy - 4 years, 8 months ago

Log in to reply

BTW, shouldn't it be 10 0 2 9 9 2 \dfrac{100^2}{99^2} instead?

Viki Zeta - 4 years, 8 months ago

Log in to reply

@Viki Zeta Ahh... yes. Thanks again! Corrected.

Kishore S. Shenoy - 4 years, 8 months ago

N = 1 + 0.02 + 0.0003 + 0.000004 + . . . = 1 + 2 ( 0.1 ) 2 + 3 ( 0.1 ) 4 + 4 ( 0.1 ) 6 + . . . N = 1 + 0.02 + 0.0003 + 0.000004 + ... = 1 + 2(0.1)^2 + 3(0.1)^4 + 4(0.1)^6 + ...

Let x = 0.1 x=0.1 , then:

N = 1 + 2 ( x ) 2 + 3 ( x ) 4 + 4 ( x ) 6 + . . . = 1 + 3 x 2 x 2 + 5 x 4 2 x 4 + 7 x 6 3 x 6 + . . . = ( 1 + 3 x 2 + 5 x 4 + 7 x 6 + . . ) ( x 2 + 2 x 4 + 3 x 6 + . . . ) N = 1 + 2(x)^2 + 3(x)^4 + 4(x)^6 + ... = 1 + 3x^2 - x^2 + 5x^4 - 2x^4 + 7x^6 - 3x^6 + ... = (1+3x^2+5x^4+7x^6+..) - (x^2 + 2x^4 + 3x^6 + ...)

= [ d d x ( x + x 3 + x 5 + . . ) ] [ ( x 2 + x 4 + x 6 + . . ) + ( x 4 + x 6 + . . . ) + ( x 6 + x 8 + . . ) + . . . ] = [\frac{d}{dx} (x + x^3 + x^5 + ..)] - [(x^2 + x^4 + x^6 + ..) + (x^4 + x^6 + ...) + (x^6 + x^8 + ..) + ...]

Using the formula for infinite GP, we have:

= d d x ( x 1 x 2 ) ( x 2 1 x 2 + x 4 1 x 2 + x 6 1 x 2 + . . ) = \frac{d}{dx} (\frac{x}{1-x^2}) - ( \frac{x^2}{1-x^2} + \frac{x^4}{1-x^2} + \frac{x^6}{1-x^2} + ..)

= ( 1 x 2 ) 1 ( 2 x ) x ( 1 x 2 ) 2 x 2 + x 4 + x 6 + x 8 + . . . 1 x 2 = \frac{(1-x^2) \cdot 1 - (-2x) \cdot x}{(1-x^2)^2} - \frac{x^2 + x^4 + x^6 + x^8 + ...}{1-x^2}

Once again, applying the infinite GP formula,

= 1 + x 2 ( 1 x 2 ) 2 x 2 ( 1 x 2 ) 2 = \frac{1+x^2}{(1-x^2)^2} - \frac{x^2}{(1-x^2)^2}

= 1 ( 1 x 2 ) 2 = \frac{1}{(1-x^2)^2}

Now, we can substitute x = 0.1 x=0.1 :

= 1 ( 1 0. 1 2 ) 2 = 10000 9801 10000 9801 = 199 = \frac{1}{(1-0.1^2)^2} = \frac{10000}{9801} \implies 10000-9801 = \boxed{199}

Michael Mendrin
Sep 16, 2016

This assumes that the progression of consecutive 2-digit numbers 02 , 03 , 04 , 05 , . . . . 02,03,04,05,.... ends at . . . 95 , 96 , 97 ...95,96,97 . That is, there is no 98 98 , as the sequence goes . . . 95 , 96 , 97 , 99 , 00 , 01 ...95,96,97,99,00,01 before it all repeats. That's the curious thing about this sequence, all of the 2 digit numbers from 00 00 to 99 99 are present, with the sole exception of 98 98 .

In order to get the same thing but with 98 98 included, we'd have to have the horrifically inelegant fraction of

1030610152128364555667892062137547292123355790328548210397001336701367 1030610152128364555667892062137547292123355790328548210397001336701367
3104888287012560045923988378839924600561270288849107337016734017040108 3104888287012560045923988378839924600561270288849107337016734017040108
25529037956341292735538220692796756463729221611070402010000 25529037956341292735538220692796756463729221611070402010000

divided by

1010101010101010101010101010101010101010101010101010101010101010101010 1010101010101010101010101010101010101010101010101010101010101010101010
1010101010101010101010101010101010101010101010101010101010101010101010 1010101010101010101010101010101010101010101010101010101010101010101010
10101010101010101010101010101010101010101010101010101010101 10101010101010101010101010101010101010101010101010101010101

What a difference that 98 98 makes!

Noticeable. How did you divide till 98. I could not go beyond 75.

Viki Zeta - 4 years, 9 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...