N = = 1 + 0 . 0 2 + 0 . 0 0 0 3 + 0 . 0 0 0 0 0 4 + ⋯ + 1 0 0 n − 1 n + ⋯ 1 . 0 2 0 3 0 4 0 5 …
Given that N represents an infinite arithmetic-geometric progression sum and it can be expressed as b a , where a and b are coprime positive integers. Find a − b .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
1
0
0
0
N
=
1
0
.
2
0
3
0
4
0
5
0
.
.
.
.
.
.
−
−
−
−
1
1
0
N
=
1
0
2
0
.
3
0
4
0
5
0
6
0
.
.
.
.
.
.
−
−
−
−
2
[Subtract 2nd from the 1st equation]
________________
9
9
0
N
=
1
0
1
0
.
1
0
⇒
9
9
0
N
=
1
0
1
0
9
9
1
0
Therefore
N
=
9
8
0
1
1
0
0
0
0
.
a
=
1
0
0
0
0
and
b
=
9
8
0
1
.
So
a
−
b
=
1
0
0
0
0
−
9
8
0
1
=
1
9
9
.
Method 1 - General Method
From Binomial - Theorem , ( 1 − x ) − 1 = 1 + x + x 2 + x 2 + ⋯ = 0 ∑ ∞ x i
Differentiating, d x d 0 ∑ ∞ x i = 0 ∑ ∞ i x i − 1 = d x d ( 1 − x ) − 1 = ( 1 − x ) − 2
Substituting x = 1 0 0 , N = 9 9 2 1 0 0 2
Hence a − b = 1 0 0 + 9 9 = 1 9 9
Method 2 - Direct Binomial Theorem
From Binomial - Theorem , we get ( 1 − x ) − n = 0 ∑ ∞ ( r n + r − 1 ) x r
Using transform r + 1 → R ( 1 − x ) − n = 0 ∑ ∞ ( R − 1 n + R − 2 ) x R − 1
We need ( R − 1 n + R − 2 ) = R . So n = 2
Thus we get, the required sum is N = ( 1 − x ) − 2 at { x = 1 0 0 1 } = 9 9 2 1 0 0 2
Hence a − b = 1 0 0 + 9 9 = 1 9 9
Binomial Theorem
( 1 + x ) n = 0 ∑ n ( r n ) x r ( 1 + x ) p / q = 1 + 1 ! p ( q x ) 1 + 2 ! p ( p − q ) ( q x ) 2 + 3 ! p ( p − q ) ( p − 2 q ) ( q x ) 3 + ⋯ ( 1 − x ) − p / q = 1 + 1 ! p ( q x ) 1 + 2 ! p ( p + q ) ( q x ) 2 + 3 ! p ( p + q ) ( p + 2 q ) ( q x ) 3 + ⋯ → Remember only this ( 1 − x ) − n = 1 + 1 ! n ( 1 x ) 1 + 2 ! n ( n + 1 ) ( 1 x ) 2 + 3 ! n ( n + 1 ) ( n + 2 ) ( 1 x ) 3 + ⋯ = 0 ∑ ∞ ( r n + r − 1 ) x r
Here you go, some links:
Cool! Different solution ;)
Log in to reply
Thanks! :)
Log in to reply
BTW, shouldn't it be 9 9 2 1 0 0 2 instead?
Log in to reply
@Viki Zeta – Ahh... yes. Thanks again! Corrected.
N = 1 + 0 . 0 2 + 0 . 0 0 0 3 + 0 . 0 0 0 0 0 4 + . . . = 1 + 2 ( 0 . 1 ) 2 + 3 ( 0 . 1 ) 4 + 4 ( 0 . 1 ) 6 + . . .
Let x = 0 . 1 , then:
N = 1 + 2 ( x ) 2 + 3 ( x ) 4 + 4 ( x ) 6 + . . . = 1 + 3 x 2 − x 2 + 5 x 4 − 2 x 4 + 7 x 6 − 3 x 6 + . . . = ( 1 + 3 x 2 + 5 x 4 + 7 x 6 + . . ) − ( x 2 + 2 x 4 + 3 x 6 + . . . )
= [ d x d ( x + x 3 + x 5 + . . ) ] − [ ( x 2 + x 4 + x 6 + . . ) + ( x 4 + x 6 + . . . ) + ( x 6 + x 8 + . . ) + . . . ]
Using the formula for infinite GP, we have:
= d x d ( 1 − x 2 x ) − ( 1 − x 2 x 2 + 1 − x 2 x 4 + 1 − x 2 x 6 + . . )
= ( 1 − x 2 ) 2 ( 1 − x 2 ) ⋅ 1 − ( − 2 x ) ⋅ x − 1 − x 2 x 2 + x 4 + x 6 + x 8 + . . .
Once again, applying the infinite GP formula,
= ( 1 − x 2 ) 2 1 + x 2 − ( 1 − x 2 ) 2 x 2
= ( 1 − x 2 ) 2 1
Now, we can substitute x = 0 . 1 :
= ( 1 − 0 . 1 2 ) 2 1 = 9 8 0 1 1 0 0 0 0 ⟹ 1 0 0 0 0 − 9 8 0 1 = 1 9 9
This assumes that the progression of consecutive 2-digit numbers 0 2 , 0 3 , 0 4 , 0 5 , . . . . ends at . . . 9 5 , 9 6 , 9 7 . That is, there is no 9 8 , as the sequence goes . . . 9 5 , 9 6 , 9 7 , 9 9 , 0 0 , 0 1 before it all repeats. That's the curious thing about this sequence, all of the 2 digit numbers from 0 0 to 9 9 are present, with the sole exception of 9 8 .
In order to get the same thing but with 9 8 included, we'd have to have the horrifically inelegant fraction of
1
0
3
0
6
1
0
1
5
2
1
2
8
3
6
4
5
5
5
6
6
7
8
9
2
0
6
2
1
3
7
5
4
7
2
9
2
1
2
3
3
5
5
7
9
0
3
2
8
5
4
8
2
1
0
3
9
7
0
0
1
3
3
6
7
0
1
3
6
7
3
1
0
4
8
8
8
2
8
7
0
1
2
5
6
0
0
4
5
9
2
3
9
8
8
3
7
8
8
3
9
9
2
4
6
0
0
5
6
1
2
7
0
2
8
8
8
4
9
1
0
7
3
3
7
0
1
6
7
3
4
0
1
7
0
4
0
1
0
8
2
5
5
2
9
0
3
7
9
5
6
3
4
1
2
9
2
7
3
5
5
3
8
2
2
0
6
9
2
7
9
6
7
5
6
4
6
3
7
2
9
2
2
1
6
1
1
0
7
0
4
0
2
0
1
0
0
0
0
divided by
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
What a difference that 9 8 makes!
Noticeable. How did you divide till 98. I could not go beyond 75.
Problem Loading...
Note Loading...
Set Loading...
Relevant wiki: Arithmetic-Geometric Progression
N = 1 . 0 2 0 3 0 4 0 5 … N = 1 + 0 . 0 2 + 0 . 0 0 0 3 + 0 . 0 0 0 0 0 4 + 0 . 0 0 0 0 0 0 0 5 + … Multiply both side by ‘100’ 1 0 0 N = 1 0 0 + 2 + 0 . 0 3 + 0 . 0 0 0 4 + 0 . 0 0 0 0 0 5 + … Subtract it from N 1 0 0 N = 1 0 0 + 2 + 0 . 0 3 + 0 . 0 0 0 4 + 0 . 0 0 0 0 0 5 + … (-)N = − 1 − 0 . 0 2 − 0 . 0 0 0 3 − 0 . 0 0 0 0 0 4 − … __________________________________________ 9 9 N = 1 0 0 + 1 + 0 . 0 1 + 0 . 0 0 0 1 + 0 . 0 0 0 0 0 1 + 0 . 0 0 0 0 0 0 0 1 + … Now, combine all of those geometric progressions 9 9 N = 1 0 0 + ( 1 + 0 . 1 + 0 . 0 0 0 1 + 0 . 0 0 0 0 0 1 + 0 . 0 0 0 0 0 0 0 1 + … ) ( 1 + 0 . 1 + 0 . 0 0 0 1 + 0 . 0 0 0 0 0 1 + 0 . 0 0 0 0 0 0 0 1 + … ) is in Geometric Progression, where a = 1, r = 1 0 0 1 Therefore, as GP tends to infinity 9 9 N = 1 0 0 + ( 1 − r a ) 9 9 N = 1 0 0 + ( 1 − 1 0 0 1 1 ) 9 9 N = 1 0 0 + ( 1 0 0 1 0 0 − 1 1 ) 9 9 N = 1 0 0 + ( 9 9 1 0 0 ) 9 9 N = 9 9 ( 1 0 0 × 9 9 ) + 1 0 0 9 9 N = 9 9 ( 9 9 0 0 ) + 1 0 0 9 9 N = 9 9 1 0 , 0 0 0 N = 9 8 0 1 1 0 0 0 0 Therefore the answer is 1 0 0 0 0 - 9 8 0 1 = 1 9 9 _____________________________________________________________________________________________________ Instead you can also use Arithmetico-Geometric progression. N is in AGP, where a = 1, d = 1, r = 1 0 0 1 As AGP tends to infinity ⟹ N = 1 − r a + ( 1 − r ) 2 d r ⟹ N = 1 − 1 0 0 1 1 + ( 1 − 1 0 0 1 ) 2 1 × 1 0 0 1 ⟹ N = 1 0 0 1 0 0 − 1 1 + ( 1 0 0 1 0 0 − 1 ) 2 1 0 0 1 ⟹ N = 9 9 1 0 0 + 9 9 × 9 9 1 0 0 ⟹ N = 9 9 × 9 9 1 0 0 × 9 9 + 1 0 0 ⟹ N = 9 8 0 1 1 0 0 0 0 Therefore, a - b = 1 9 9