irreducible polynomial

Calculus Level 5

If 1 ln ( x 4 2 x 2 + 2 ) x x 2 1 d x = π ln ( 2 + α 2 ) \int_1^{\infty}\frac{\ln(x^4-2x^2+2)}{x\sqrt{x^2-1}}dx=\pi\ln(2+\alpha\sqrt{2}) where α \alpha is positive integer.

Find the value of α + 3 \alpha+3 .


This problem appeared in American Mathematical Monthly, 2020 May as problem 12184-05 which was proposed by P. Perfetti , Italy where the original problem was to prove the closed form .


The answer is 4.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Naren Bhandari
Oct 25, 2020

Problem 12184-05 \text{Problem 12184-05}

American Mathematical Monthly, May 2020

Proposed by P. Perfetti, Italy \text{Proposed by P. Perfetti, Italy}

Prove 1 ln ( x 4 2 x 2 + 2 ) x x 2 1 d x = π ln ( 2 + 2 ) \int_1^{\infty}\frac{\ln(x^4-2x^2+2)}{x\sqrt{x^2-1}}dx=\pi \ln(2+\sqrt 2)

Proposed solution by: \text{Proposed solution by:} Narendra Bhandari, National Academy of Science and technology, Pokhara University,Bajura,Nepal


We make substitution of x 2 1 = y x = y + 1 x^2-1=y\Rightarrow x=\sqrt{y+1} giving us 0 ln ( ( y + 1 ) 4 2 y ) y + 1 y d y 2 y + 1 = 1 2 0 ln ( y 2 + 1 ) ( y + 1 ) y d y \int_0^{\infty}\frac{\ln((\sqrt{y+1})^4-2y)}{ \sqrt{y+1}\sqrt{y}}\frac{dy}{2 \sqrt{y+1}}=\frac{1}{2}\int_0^{\infty}\frac{\ln(y^2+1)}{(y+1)\sqrt{y}}dy further we substitute y = tan 2 θ d y = 2 tan θ sec 2 θ d θ y=\tan^2 \theta\Rightarrow dy=2\tan \theta \sec^2\theta d\theta and the latter integral becomes 0 π 2 ln ( 1 + tan 4 θ ) d θ = 0 π 2 ln ( sin 4 θ + cos 4 θ ) d θ I 1 0 π 2 ln ( cos 4 θ ) d θ I 2 \int_0^{\frac{\pi}{2}}\ln(1+\tan^4\theta) d\theta =\underbrace{\int_0^{\frac{\pi}{2}}\ln(\sin^4\theta + \cos^4\theta ) d\theta }_{I_1}-\underbrace {\int_0^{\frac{\pi}{2}}\ln(\cos^4\theta)d\theta}_{I_2} Note that for all a , b > 0 a,b>0 we have the Lemma and which I proved here is MSE 0 π 2 ln ( b 2 sin 2 θ + a 2 cos 2 θ ) d θ = π ln a + b 2 \int_0^{\frac{\pi}{2}} \ln(b^2\sin^2\theta+a^2\cos^2\theta) d\theta=\pi\ln\frac{a+b}{2} and sin 4 θ + cos 4 θ = 1 2 sin 2 θ cos 2 θ = 1 sin 2 2 θ 2 = 1 2 ( 2 cos 2 2 θ + sin 2 2 θ ) \sin^4\theta +\cos^4\theta =1-2\sin^2\theta \cos^2\theta=1-\frac{\sin^22\theta}{2} =\frac{1}{2}(2\cos^2 2\theta + \sin^2 2\theta) thus integral I 1 = I_1= 0 π 2 ln ( cos 2 2 θ + 1 2 sin 2 2 θ ) d θ = 1 2 0 π ln ( cos 2 ϕ + 1 2 sin 2 ϕ ) d ϕ = π ln 1 + 2 2 2 \int_0^{\frac{\pi}{2}}\ln\left(\cos^22\theta+\frac{1}{2}\sin^22\theta\right)d\theta=\frac{1}{2}\int_0^{\pi}\ln\left(\cos^2\phi + \frac{1}{2}\sin^2\phi\right)d\phi=\pi\ln\frac{1+\sqrt{2}}{2 \sqrt{2}} ( 1 ) \cdots (1) the latter result is obtained using the Lemma above

And for I 2 I_2 is easy to compute the integral using Fourier series of ln ( cos x ) \ln(\cos x) for 0 θ < π 2 0 \leq \theta < \frac{\pi}{2} . That is 0 π 2 ln ( cos θ ) d θ = 0 π 2 ( ln 2 k = 1 ( 1 ) k k cos ( 2 k θ ) ) d θ = π 2 ln 2 \int_0^{\frac{\pi}{2}}\ln(\cos \theta) d\theta=\int_0^{\frac{\pi}{2}}\left(-\ln 2 -\sum_{k=1}^{\infty}\frac{(-1)^k}{k}\cos (2k\theta) \right)d\theta=-\frac{\pi}{2}\ln 2 k = 1 ( 1 ) k k 0 π 2 cos ( 2 k θ ) d θ = [ k = 1 ( 1 ) k k 2 sin ( 2 k θ ) ] 0 π 2 = 1 2 k = 1 ( 1 ) k sin ( 2 π k ) k 2 -\sum_{k=1}^{\infty}\frac{(-1)^k}{k}\int_0^{\frac{\pi}{2}}\cos(2k\theta)d\theta =-\left[\sum_{k=1}^{\infty}\frac{(-1)^{k}}{k^2}\sin(2k\theta)\right]_0^{\frac{\pi}{2}}=-\frac{1}{2}\sum_{k=1}^{\infty}\frac{(-1)^k\sin(2\pi k)}{k^2} the obtained series is 0 0 as sin ( 2 π k ) = 0 \sin(2\pi k) = 0 for positive integers k k and hence I 2 = 4 0 π 2 ln ( cos θ ) d θ = 4 π 2 ln 2 = π ln ( 4 ) ( 2 ) \displaystyle I_2=4\int_0^{\frac{\pi}{2}}\ln(\cos\theta)d\theta =-\frac{4\pi}{2}\ln2 =-\pi\ln(4)\cdots (2) from ( 1 ) (1) and ( 2 ) (2) we have I 1 I 2 = π ln ( 1 + 2 2 2 ) + π ln ( 4 ) = π ln ( 2 + 2 ) I_1-I_2=\pi\ln\left(\frac{1+\sqrt{2}}{2\sqrt 2}\right)+\pi\ln(4)=\pi\ln\left(2+\sqrt{2}\right) which completes the proof.

Without fourier cosine series . Also it is easy to see that 0 π 2 ln ( cos x ) d x = 1 2 Cl 2 ( π π ) π 2 ln 2 = π 2 ln 2 \int_0^{\frac{\pi}{2}}\ln(\cos x) dx= \frac{1}{2}\operatorname{Cl}_2\left(\pi -\pi\right)-\frac{\pi}{2}\ln 2=-\frac{\pi}{2}\ln 2 where Cl 2 ( x ) \operatorname{Cl}_2(x) is Clausen Function of order 2 and Cl 2 ( 0 ) = 0 \operatorname{Cl}_2(0)=0 .


I wish to share the solution due to Farid Khelili which is as

An easier way to evaluate I 2 I_2 (this is a very well-known result but I think it should be mentioned) -

I = 0 π 2 ln ( cos x ) d x = 0 π 2 ln ( sin x ) d x 2 I = 0 π 2 ln ( sin x cos x ) d x = 0 π 2 ln ( 1 2 sin 2 x ) d x = 0 π 2 ln ( sin 2 x ) d x π 2 ln ( 2 ) = I π 2 ln ( 2 ) I = \int_{0}^{\frac {\pi}{2}} \ln (\cos x) dx = \int_{0}^{\frac {\pi}{2}} \ln (\sin x) dx \therefore 2I = \int_{0}^{\frac {\pi}{2}} \ln(\sin x \cdot \cos x) dx = \int_{0}^{\frac {\pi}{2}} \ln\left(\frac {1}{2} \sin 2x\right) dx = \int_{0}^{\frac {\pi}{2}} \ln (\sin 2x) dx - \frac {\pi}{2}\ln (2) = I - \frac {\pi}{2}\ln (2)

by substituting 2 x x . 2x \to x.

I 2 = 2 π ln ( 2 ) = π ln ( 4 ) \Rightarrow I_2 = -2\pi \ln (2) = -\pi \ln (4)

N. Aadhaar Murty - 7 months, 2 weeks ago

Log in to reply

I'm familiar with it. It makes easy with upper bound π / 2 \pi/2 . How will you evaluate if the upper bould is other than π / 2 \pi/2 ?

One can even solve this integral using Riemann summation.

Naren Bhandari - 7 months, 2 weeks ago

Log in to reply

Since

I 0 = 0 π 2 ln ( sin 2 x ) d x = 1 2 0 π ln ( sin x ) d x I _0 = \int_{0}^{\frac {\pi}{2}} \ln (\sin 2x) dx = \frac {1}{2}\int_{0}^{\pi} \ln ( \sin x) dx

By substituting 2 x x . 2x \to x. Now

I 0 = 1 2 ( 0 π 2 ln ( sin x ) d x + π 2 π ln ( sin x ) d x ) = 1 2 ( I + 0 π 2 ln ( sin ( x + π 2 ) ) ) d x = 1 2 I + 1 2 0 π 2 ln ( cos x ) d x = I I_0 = \frac {1}{2}\left(\int_{0}^{\frac {\pi}{2}} \ln (\sin x) dx +\int_{\frac {\pi}{2}}^{\pi} \ln (\sin x) dx\right) = \frac {1}{2}\left(I + \int_{0}^{\frac {\pi}{2}} \ln (\sin (x + \frac {\pi}{2}))\right) dx = \frac {1}{2}I + \frac {1}{2}\int_{0}^{\frac {\pi}{2}} \ln (\cos x) dx = I

By substituting x π 2 = u x - \frac {\pi}{2} = u and since sin ( π 2 + x ) = cos x . \sin (\frac {\pi}{2} + x) = \cos x.

N. Aadhaar Murty - 7 months, 2 weeks ago

Log in to reply

@N. Aadhaar Murty You still dont get what I'm saying. Have a look at this problem .

Naren Bhandari - 7 months, 2 weeks ago

Log in to reply

@Naren Bhandari Sorry bout that - somehow I thought my solution wasn't clear and you were asking about that. You're right of course, the π 2 \frac {\pi}{2} does make it easier. Also, I think I'll have to some background study before I can go into your problem - it seems fairly complex.

N. Aadhaar Murty - 7 months, 2 weeks ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...