Don't you love Inequalities?

Algebra Level 4

Positive real numbers a a , b b and c c are such that a b c = 1 abc = 1 . Find the minimum value of 1 a 3 ( b + c ) + 1 b 3 ( c + a ) + 1 c 3 ( a + b ) \large \dfrac{1}{a^3(b+c)}+\dfrac{1}{b^3(c+a)}+\dfrac{1}{c^3(a+b)} Give your answer to the nearest tenths.


Source: an IMO problem


The answer is 1.5.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Md Zuhair
Feb 17, 2017

Relevant wiki: Titu's Lemma

1 a 3 ( b + c ) + 1 b 3 ( c + a ) + 1 c 3 ( a + b ) \large \dfrac{1}{a^3(b+c)}+\dfrac{1}{b^3(c+a)}+\dfrac{1}{c^3(a+b)}

Now we can rewrite as ( b c ) 3 ( b + c ) + ( a c ) 3 ( c + a ) + ( a b ) 3 ( a + b ) \large \dfrac{(bc)^3}{(b+c)}+\dfrac{(ac)^3}{(c+a)}+\dfrac{(ab)^3}{(a+b)} .

Now it can re written as ( b c ) 2 ( 1 b + 1 c ) + ( a c ) 2 ( 1 c + 1 a ) + ( a b ) 2 ( 1 a + 1 b ) \large \dfrac{(bc)^2}{(\dfrac{1}{b}+\dfrac{1}{c})}+\dfrac{(ac)^2}{(\dfrac{1}{c}+\dfrac{1}{a})}+\dfrac{(ab)^2}{(\dfrac{1}{a}+\dfrac{1}{b})} .

Hence Now By Titu's Lemma, We Get,

( b c ) 2 ( 1 b + 1 c ) + ( a c ) 2 ( 1 c + 1 a ) + ( a b ) 2 ( 1 a + 1 b ) \large \dfrac{(bc)^2}{(\dfrac{1}{b}+\dfrac{1}{c})}+\dfrac{(ac)^2}{(\dfrac{1}{c}+\dfrac{1}{a})}+\dfrac{(ab)^2}{(\dfrac{1}{a}+\dfrac{1}{b})} \geq ( b c + a c + a b ) 2 2 a + 2 b + 2 c \large \dfrac{(bc+ac+ab)^2}{\dfrac{2}{a}+\dfrac{2}{b}+\dfrac{2}{c}}

Now , a b c = 1 abc=1

Hence b c + a c + a b 3 bc+ac+ab \geq 3 [By AM GM]

Now Simplifying the denominator gives us

2 a + 2 b + 2 c \dfrac{2}{a}+\dfrac{2}{b}+\dfrac{2}{c} = 2 a b + 2 b c + 2 a c a b c \dfrac{2ab+ 2bc + 2ac}{abc}

Now abc=1

Hence 2 a b + 2 b c + 2 a c {2ab+ 2bc + 2ac} --->Denominator

So our expression becomes ( a b + b c + c a ) 2 2 ( a b + b c + c a ) \dfrac{(ab+bc+ca)^2}{2(ab+bc+ca)} = a b + b c + c a 2 \dfrac{ab+bc+ca}{2}

Now plugging the min. value of a b + b c + c a ab+bc+ca on the numerator, we get 3 3 , and on denominator have already 2 2 .

Getting our answer as 1 a 3 ( b + c ) + 1 b 3 ( c + a ) + 1 c 3 ( a + b ) 3 2 \large \dfrac{1}{a^3(b+c)}+\dfrac{1}{b^3(c+a)}+\dfrac{1}{c^3(a+b)} \geq \dfrac{3}{2} = 1.5 \boxed{1.5}

Note that you cannot simply "plug the min value of a b + b c + c a ab + bc + ca in the numerator and the denominator".

If we want to find the minimum of n d \frac{n}{d} , it is not equal to the minimum of n n / minimium of d d .

Calvin Lin Staff - 4 years, 3 months ago

Log in to reply

No sir ., yoou may see that the ab+bc+ca in denominator is being divided by the numerator ( a b + b c + c a ) 2 (ab+bc+ca)^2

Md Zuhair - 4 years, 3 months ago

So it becomes a b + b c + c a 2 \geq \dfrac{ab+bc+ca}{2} , Now putting minimum of a b + b c + c a ab+bc+ca , we get 3 2 \geq \dfrac{3}{2} = 1.5 \boxed{1.5}

Md Zuhair - 4 years, 3 months ago

Log in to reply

Right, so the tiny detail (that you just verbalized) is first do the cancellation to get the expression into the form b c + a c + a b 2 \frac{ bc + ac + ab } { 2} , instead of leaving it in the form ( b c + a c + a b ) 2 2 a b + 2 b c + 2 a c \frac{ (bc+ac+ab)^2 } { 2ab + 2bc + 2ac } .

That was not fully conveyed when you said " 2ab + 2bc + 2ac --> denominator", since that makes it into the latter form, and not the former.

Calvin Lin Staff - 4 years, 3 months ago

Log in to reply

@Calvin Lin Ok sir, Making changes as per you.

Md Zuhair - 4 years, 3 months ago

@Calvin Lin Sir, is it ok now?

Md Zuhair - 4 years, 3 months ago

Log in to reply

@Md Zuhair Can you complete the final step of saying

So our expression becomes ( a b + b c + c a ) 2 2 ( a b + b c + c a ) = a b + b c + c a 2 \dfrac{(ab+bc+ca)^2}{2(ab+bc+ca)} = \dfrac{ ab+bc+ca } { 2}

Do you see why this is important? We do not want to leave a b + b c + c a ab+bc+ca in the denominator.

Calvin Lin Staff - 4 years, 3 months ago

Log in to reply

@Calvin Lin Ya true sir. Ok

Md Zuhair - 4 years, 3 months ago

@Calvin Lin Thank you sir, Changes made

Md Zuhair - 4 years, 3 months ago
John 10086
Sep 19, 2018

We can use the A M G M AM\ge GM to find the minimum values of:

a + b + c 3 a b c 3 a + b + c 3 a c + b c + b a 3 a 2 b 2 c 2 3 a c + b c + b a 3 \frac { a+b+c }{ 3 } \ge \sqrt [ 3 ]{ abc } \\ a+b+c\ge 3\\ \\ \frac { ac+bc+ba }{ 3 } \ge \sqrt [ 3 ]{ a^{ 2 }{ b }^{ 2 }{ c }^{ 2 } } \\ ac+bc+ba\ge 3\\ \\

Then we can use Vieta´s formulas to find the minimum values of a, b and c

a 3 x 3 + a 2 x 2 + a 1 x + a 0 a b c = 1 = a 0 a 3 = 1 1 a + b + c = 3 = a 2 a 3 = 3 1 a c + b c + b a = 3 = a 1 a 3 = 3 1 a 3 = 1 a 2 = 3 a 1 = 3 a 0 = 1 x 3 3 x 2 + 3 x 1 = ( x 1 ) 3 a = 1 b = 1 c = 1 1 a 3 ( b + c ) + 1 b 3 ( c + a ) + 1 c 3 ( a + b ) = 1 1 ( 1 + 1 ) + 1 1 ( 1 + 1 ) + 1 1 ( 1 + 1 ) = 3 1 2 = 3 2 1 a 3 ( b + c ) + 1 b 3 ( c + a ) + 1 c 3 ( a + b ) 3 2 { a }_{ 3 }x^{ 3 }+{ a }_{ 2 }{ x }^{ 2 }+{ a }_{ 1 }{ x }+a_{ 0 }\\ abc=\quad 1=\quad -\cfrac { { a }_{ 0 } }{ a_{ 3 } } =\quad -\cfrac { -1 }{ 1 } \\ a+b+c=\quad 3=\quad -\cfrac { { a }_{ 2 } }{ { a }_{ 3 } } =\quad -\cfrac { -3 }{ 1 } \\ ac+bc+ba=\quad 3=\quad \cfrac { { a }_{ 1 } }{ { a }_{ 3 } } =\quad \cfrac { 3 }{ 1 } \\ { a }_{ 3 }=1\quad { a }_{ 2 }=-3\quad { a }_{ 1 }=3\quad { a }_{ 0 }=-1\\ x^{ 3 }-3{ x }^{ 2 }+3{ x }-1\quad =\quad (x-1)^{ 3 }\\ a=1\quad b=1\quad c=1\\ \frac { 1 }{ a^{ 3 }(b+c) } +\frac { 1 }{ b^{ 3 }(c+a) } +\frac { 1 }{ c^{ 3 }(a+b) } =\quad \frac { 1 }{ 1(1+1) } +\frac { 1 }{ 1(1+1) } +\frac { 1 }{ 1(1+1) } \quad =\quad 3\frac { 1 }{ 2 } =\quad \frac { 3 }{ 2 } \\ \\ \frac { 1 }{ a^{ 3 }(b+c) } +\frac { 1 }{ b^{ 3 }(c+a) } +\frac { 1 }{ c^{ 3 }(a+b) } \ge \quad \frac { 3 }{ 2 } \\ \\ \\ \\ \\ \\ \\ \\

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...