Is it ok??

Which is greatest?

3 70 3^{70} None 2 100 2^{100} 10 0 10 100^{10} 1 0 20 10^{20}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

Chew-Seong Cheong
Mar 11, 2018

Note that 10 0 10 = ( 1 0 2 ) 10 = 1 0 20 100^{10} = (10^2)^{10} = 10^{20} . Now consider 2 100 1 0 20 = 2 100 2 20 5 20 = 2 80 5 20 = 1 6 20 5 20 > 1 \dfrac {2^{100}}{10^{20}} = \dfrac {2^{100}}{2^{20}5^{20}} = \dfrac {2^{80}}{5^{20}} = \dfrac {16^{20}}{5^{20}} > 1 , 2 100 > 1 0 20 = 10 0 10 \implies 2^{100} > 10^{20} = 100^{10} . And 3 70 2 100 = 9 35 2 ( 8 33 ) > 9 35 8 34 > 1 \dfrac {3^{70}}{2^{100}} = \dfrac {9^{35}}{2(8^{33})} > \dfrac {9^{35}}{8^{34}} > 1 , 3 70 > 2 100 > 1 0 20 = 10 0 10 \implies 3^{70} > 2^{100} > 10^{20} = 100^{10} . Therefore, 3 70 \boxed{3^{70}} is the greatest.

Nice and short solution Sir

Aryan Sanghi - 3 years, 3 months ago
Aryan Sanghi
Mar 11, 2018

Let 2 100 ^{100} =x

log 2 100 ^{100} =logx

100log2=logx

30.102=logx

10 30.102 ^{30.102} =x


Let 3 70 ^{70} =y

log3 70 ^{70} =logy

70log3=logy

33.398=logy

10 33.398 ^{33.398} =y


100 10 ^{10} =10 20 ^{20}

And definitely 10 20 ^{20} =10 20 ^{20}


Hence, 3 70 ^{70} is greatest

Since we are comparing positive integers, we can take 1 0 th 10^{\text{th}} root of all of them. 3 70 10 = 3 7 = 2187 -greatest \sqrt[10]{3^{70}}=3^7=2187 \text{-greatest} 2 100 10 = 2 10 = 1024 \sqrt[10]{2^{100}}=2^{10}=1024 10 0 10 10 = 100 \sqrt[10]{100^{10}}=100 1 0 20 10 = 1 0 2 = 100 \sqrt[10]{10^{20}}=10^2=100 3 70 is the greatest! \therefore \boxed{{3^{70}} \text{is the greatest!}}

Excellent solution Vinayak. Thanku for sharing it with us.

Aryan Sanghi - 10 months, 3 weeks ago

Log in to reply

Thank you! But I think this is basics, so not a big feat to solve, your other problems are more difficult!

Vinayak Srivastava - 10 months, 3 weeks ago

Log in to reply

Thanks a lot for your appreciation. :)

Aryan Sanghi - 10 months, 3 weeks ago

Log in to reply

@Aryan Sanghi Is the answer to this correct?

Vinayak Srivastava - 10 months, 3 weeks ago

Log in to reply

@Vinayak Srivastava I'll see to it.

Aryan Sanghi - 10 months, 3 weeks ago

@Vinayak Srivastava Yes it is correct. Check out my solution. :)

Aryan Sanghi - 10 months, 3 weeks ago
Henri Kärpijoki
Apr 10, 2020

Similar to @Aryan Sanghi 's solution but I want to share it anyway. So we know that one can find the number of digits of a positive integer with a formula

# d i g i t s i n x = lg ( x ) + 1 \#\ digits\ in\ x=\lfloor\lg\left(x\right)\rfloor+1

We know

1 0 20 = 1 0 2 10 = ( 1 0 2 ) 10 = 10 0 10 10^{20}=10^{2\cdot10}=\left(10^2\right)^{10}=100^{10}

And the number of digits:

# d i g i t s i n 1 0 20 = lg ( 1 0 20 ) + 1 = 20 + 1 = 21 \#\ digits\ in\ 10^{20}=\lfloor\lg\left(10^{20}\right)\rfloor+1=\lfloor20\rfloor+1=21

Let's apply this formula to other numbers too:

# d i g i t s i n 2 70 = lg ( 2 70 ) + 1 = 31 \#\ digits\ in\ 2^{70}=\lfloor\lg\left(2^{70}\right)\rfloor+1=31

# d i g i t s i n 3 70 = lg ( 3 70 ) + 1 = 34 \#\ digits\ in\ 3^{70}=\lfloor\lg\left(3^{70}\right)\rfloor+1=34

So from this, we can conclude that 3 70 3^{70} is the largest

Excellent solution sir

Aryan Sanghi - 1 year, 2 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...