Is Quartic a square?

x 4 4 x 3 + 22 x 2 36 x + 18 \large x^4-4x^3+22x^2-36x+18

Find sum of all positive integer values of x x such that the expression above is a perfect square.


The answer is 4.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

6 solutions

Nihar Mahajan
Apr 15, 2015

x 4 4 x 3 + 22 x 2 36 x + 18 = x 4 4 x 3 + 4 x 2 + 18 x 2 36 x + 18 = ( x 2 2 x ) 2 + 18 ( x 2 2 x ) + 18 x^4-4x^3+22x^2-36x+18\\ =x^4-4x^3+4x^2+18x^2-36x+18 \\ =(x^2-2x)^2+18(x^2-2x)+18

Let the expression be equal to y 2 y^2 , x 2 2 x = a x^2-2x=a where y W y\in W :

a 2 + 18 a + 18 = y 2 a 2 + 18 a + 81 63 = y 2 ( a + 9 ) 2 63 = y 2 ( a + 9 y ) ( a + 9 + y ) = 63 a^2+18a+18=y^2 \\ a^2+18a+81-63=y^2 \\ (a+9)^2-63=y^2 \\ (a+9-y)(a+9+y)=63

We can get pairs: ( a + 9 y , a + 9 + y ) = ( 1 , 63 ) , ( 3 , 21 ) , ( 7 , 9 ) (a+9-y,a+9+y)=(1,63),(3,21),(7,9)

( a , y ) = ( 23 , 31 ) , ( 3 , 9 ) , ( 1 , 1 ) \Rightarrow (a,y)=(23,31),(3,9),(-1,1)

When a = 23 x 2 2 x 23 = 0 a=23 \Rightarrow x^2-2x-23=0 which does not fetch integer roots.

When a = 3 x 2 2 x = 3 ( x 3 ) ( x + 1 ) = 0 a=3 \Rightarrow x^2-2x=3 \Rightarrow (x-3)(x+1)=0 which gives us 3 3 as one of required roots.

When a = 1 x 2 2 x = 1 ( x 1 ) 2 = 0 a=-1 \Rightarrow x^2-2x=-1 \Rightarrow (x-1)^2=0 which gives us 1 1 as one of the requred roots.

Hence sum = 1 + 3 = 4 =1+3=\huge\boxed{\color{#3D99F6}{4}}

Moderator note:

Great job!

Good solution. But it can be done easily with Vieta's formula right?

"x1+x2+x3+x4=-b/a."

Hafizh Ahsan Permana - 6 years, 1 month ago

Log in to reply

No. Vieta's formula finds the sum of all roots, including those which are complex, or fractions, or negative integers, or repeated roots with multiplicity.

For example, x 4 4 x 3 + 22 x 2 36 x + 18 = 1 x^ 4 -4x^3 + 22x^2 -36 x + 18 = 1 has the repeated root 1, and the complex roots 1 + 4 i , 1 4 i 1 + 4i, 1 - 4i . The contribution to the "positive integer roots" is just 1.

Calvin Lin Staff - 5 years, 7 months ago

Log in to reply

Oh... the question only asked for integer sum so we can not apply Vieta's formula for this cases. How about Nihar reply? He saids that the expressions must be equal to zero. Correct me if i wrong.

Hafizh Ahsan Permana - 5 years, 6 months ago

Log in to reply

@Hafizh Ahsan Permana Sorry , that was my misconception earlier.

Nihar Mahajan - 5 years, 6 months ago

Can't we just find the intersection of y=x⁴-4x³+22x²-36x+18 & y=x² Cause I did it that way in two steps

Shreyas Suryawanshi - 11 months, 2 weeks ago

Why 18 is taken as 81-63?why not any other perfect square?

Chaithanya Chaithu - 6 years, 1 month ago

Log in to reply

So that a 2 + 18 x + 81 a^2+18x+81 becomes a perfect square.

Nihar Mahajan - 6 years, 1 month ago
Otto Bretscher
Apr 18, 2015

Let's find a perfect square ( x 2 + b x + c ) 2 (x^2+bx+c)^2 that approximates the given polynomial p ( x ) p(x) well. We let b = 2 b=-2 to generate the term 4 x 3 -4x^3 and then c = 9 c=9 to get the term 22 x 2 22x^2 . We find that ( x 2 2 x + 9 ) 2 p ( x ) = 63 (x^2-2x+9)^2-p(x)=63 . It is a straightforward algebra exercise to verify that ( x 2 2 x + 8 ) 2 (x^2-2x+8)^2 < p ( x ) <p(x) for x > 1 + 2 6 x>1+2\sqrt{6} . Being trapped between two consecutive perfect squares, p ( x ) p(x) cannot be a perfect square for x > 5. x>5. We test the cases x = 1 , . . . , 5 x = 1,...,5 to find that p ( 1 ) = 1 p(1)=1 and p ( 3 ) = 81 p(3)=81 .

@Otto Bretscher Great solution sir.....short, crisp and correct......+1.......As a side note, sir could you guide me on some tips to solving problems quickly.....unlike you, I solve a problem succesfully, but take a longer path.......pls help

Aaghaz Mahajan - 3 years, 3 months ago

nice solution, i got lucky and tried to calculate f(g(x)), where g(x)=x+1. it turns out to be a nice polynomial (x^4+16x^2+1) and then change it to (x^2+8x)^2-63

A Steven Kusuman - 2 years, 3 months ago
Arpit MIshra
Apr 16, 2015
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
double i, sum, roota;

for(i=1;i<=1000;i++)

 {

sum = (i*i*i*i) - (4*i*i*i) + (22*i*i) - (36*i) + 18;

roota = Math.sqrt(sum);

if(roota%1==0)

System.out.println(i);

}

Output-

1.0

3.0

Answer - 4 \boxed{4}

Using Octave (Matlab), after 10,000 (10000:100000 to be specific) my function timed out but was able to find the following:

Columns 1 through 10:

             19491                 19499                 19507                 19515                 19523                 19531                 19539                 19547                 19555                 19563

Columns 11 through 20:

             19571                 19579                 19587                 19595                 19603                 19611                 19619                 19627                 19635                 19643

Columns 21 through 30:

             19651                 19659                 19667                 19675                 19683                 19691                 19699                 19707                 19715                 19723

Columns 31 through 40:

             19731                 19739                 19747                 19755                 19763                 19771                 19779                 19787                 19795                 19803

Columns 41 through 50:

             19811                 19819                 19827                 19835                 19843                 19851                 19859                 19867                 19875                 19883

Columns 51 through 60:

             19891                 19899                 19907                 19915                 19923                 19931                 19939                 19947                 19955                 19963

Columns 61 through 70:

             19971                 19979                 19987                 19995                 20003                 20011                 20019                 20027                 20035                 20043

Columns 71 through 80:

             20051                 20059                 20067                 20075                 20083                 20091                 20099                 20107                 20115                 20123

Columns 81 through 90:

             20131                 20139                 20147                 20155                 20163                 20171                 20179                 20187                 20195                 20203

Columns 91 through 100:

             20211                 20219                 20227                 20235                 20243                 20251                 20259                 20267                 20275                 20283

Columns 101 through 110:

             20291                 20299                 20307                 20315                 20323                 20331                 20339                 20347                 20355                 20363

Columns 111 through 120:

             20371                 20379                 20387                 20395                 20403                 20411                 20419                 20427                 20435                 20443

Columns 121 through 130:

             20451                 20459                 20467                 20475                 20483                 20491                 20499                 20507                 20515                 20523

Columns 131 through 140:

             20531                 20539                 20547                 20555                 20563                 20571                 20579                 20587                 20595                 20603

Columns 141 through 150:

             20611                 20619                 20627                 20635                 20643                 20651                 20659                 20667                 20675                 20683

Columns 151 through 160:

             20691                 20699                 20707                 20715                 20723                 20731                 20739                 20747                 20755                 20763

Columns 161 through 170:

             20771                 20779                 20787                 20795                 20803                 20811                 20819                 20827                 20835                 20843

Columns 171 through 180:

             20851                 20859                 20867                 20875                 20883                 20891                 20899                 20907                 20915                 20923

Columns 181 through 190:

             20931                 20939                 20947                 20955                 20963                 20971                 20979                 20987                 20995                 21003

Columns 191 through 200:

             21011                 21019                 21027                 21035                 21043                 21051                 21059                 21067                 21075                 21083

Columns 201 through 210:

             21091                 21099                 21107                 21115                 21123                 21131                 21139                 21147                 21155                 21163

Columns 211 through 220:

             21171                 21179                 21187                 21195                 21203                 21211                 21219                 21227                 21235                 21243

Columns 221 through 230:

             21251                 21259                 21267                 21275                 21283                 21291                 21299                 21307                 21315                 21323

Columns 231 through 240:

             21331                 21339                 21347                 21355                 21363                 21371                 21379                 21387                 21395                 21403

Columns 241 through 250:

             21411                 21419                 21427                 21435                 21443                 21451                 21459                 21467                 21475                 21483

Columns 251 through 260:

             21491                 21499                 21507                 21515                 21523                 21531                 21539                 21547                 21555                 21563

Columns 261 through 270:

             21571                 21579                 21587                 21595                 21603                 21611                 21619                 21627                 21635                 21643

Columns 271 through 280:

             21651                 21659                 21667                 21675                 21683                 21691                 21699                 21707                 21715                 21723

Columns 281 through 290:

             21731                 21739                 21747                 21755                 21763                 21771                 21779                 21787                 21795                 21803

Columns 291 through 300:

             21811                 21819                 21827                 21835  !!! PAYLOAD TOO LARGE !!!
           21843                 21851                 21859                 21867                 21875                 21883

Columns 301 through 310:

             21891                 21899                 21907                 21915                 21923                 21931                 21939                 21947                 21955                 21963

Columns 311 through 320:

             21971                 21979                 21987                 21995                 22003                 22011                 22019                 22027                 22035                 22043

Columns 321 through 330:

             22051                 22059                 22067                 22075                 22083                 22091                 22099                 22107                 22115                 22123

Columns 331 through 340:

             22131                 22139                 22147                 22155                 22163                 22171                 22179                 22187                 22195                 22203

Columns 341 through 350:

             22211                 22219                 22227                 22235                 22243                 22251                 22259                 22267                 22275                 22283

Columns 351 through 360:

             22291                 22299                 22307                 22315                 22323                 22331                 22339                 22347                 22355                 22363

Columns 361 through 370:

             22371                 22379                 22387                 22395                 22403                 22411                 22419                 22427                 22435                 22443

Columns 371 through 380:

             22451                 22459                 22467                 22475                 22483                 22491                 22499                 22507                 22515                 22523

Columns 381 through 390:

             22531                 22539                 22547                 22555                 22563                 22571                 22579                 22587                 22595                 22603

Columns 391 through 400:

             22611                 22619                 22627                 22635                 22643                 22651                 22659                 22667                 22675                 22683

Columns 401 through 410:

             22691                 22699                 22707                 22715                 22723                 22731                 22739                 22747                 22755                 22763

Columns 411 through 420:

             22771                 22779                 22787                 22795                 22803                 22811                 22819                 22827                 22835                 22843

Columns 421 through 430:

             22851                 22859                 22867                 22875                 22883                 22891                 22899                 22907                 22915                 22923

Columns 431 through 440:

             22931                 22939                 22947                 22955                 22963                 22971                 22979                 22987                 22995                 23003

Columns 441 through 450:

             23011                 23019                 23027                 23035                 23043                 23051                 23059                 23067                 23075                 23083

Columns 451 through 460:

             23091                 23099                 23107                 23115                 23123                 23131                 23139                 23147                 23155                 23163

Columns 461 through 470:

             23172                 23173                 23175                 23176                 23177                 23179                 23181                 23188                 23189                 23191

Columns 471 through 480:

             23193                 23195                 23197                 23204                 23205                 23207                 23208                 23209                 23211                 23213

Columns 481 through 490:

             23220                 23221                 23223                 23225                 23227                 23229                 23236                 23237                 23239                 23240

Columns 491 through 500:

             23241                 23243                 23245                 23252                 23253                 23255                 23257                 23259                 23261                 23268

Columns 501 through 510:

             23269                 23271                 23272                 23273                 23275                 23277                 23284                 23285                 23287                 23289

Columns 511 through 520:

             23291                 23293                 23300                 23301                 23303                 23304                 23305                 23307                 23309                 23316

Columns 521 through 530:

             23317                 23319                 23321                 23323                 23325                 23332                 23333                 23335                 23336                 23337

Columns 531 through 540:

             23339                 23341                 23348                 23349                 23351                 23353                 23355                 23356                 23357                 23364

Columns 541 through 550:

             23365                 23367                 23368                 23369

I realize the formatting for that isn't the greatest, but it is an accurate list, trying these values works. Running the same program from 1 to 10000 shows only 1 and 3.

David Krüger - 5 years, 4 months ago

Log in to reply

I believe all the "solutions" listed are artifacts of the number of digits of precision of the calculator program. It is too laborious to calculate long hand, but unnecessary, I think. If we make the substitution y=x-1 to find the reduced quartic, the original equation becomes:

y^4 + 16 y^2 + 1 = k^2, where k is some arbitrary natural number.

Solutions for y^2 can easily be found using the quadratic formula:

y^2 = -8 + sqrt(k^2 + 63), since y^2 can't be negative

The difference between k^2 and (k+1)^2 is 2k+1. So for any value of k greater than 31 the difference to the next perfect square is greater than 63, and the radical cannot be integral. The RHS must also be a perfect square less than 24, which can only be 0, 1, 4, 9, or 16. Therefore, y can only = 0, 1, 2, 3, or 4, and x = 1, 2, 3, 4, or 5. Corresponding values of k are only integral for x = 1 or 3. This illustrates one of the hazards of testing for equality with a finite number of bits.

Tom Capizzi - 5 years, 1 month ago

very good ,, intelligent way

Nishant Sood - 5 years ago
Yong See Foo
Apr 17, 2015

I remember a really similar problem that just appeared recently: same idea, just bound it between two consecutive perfect squares, then the original expression cannot be a square. Let the given polynomial be P ( x ) P(x) (because I'm lazy), and note that the inequality P ( x ) > ( ( x 1 ) 2 1 ) 2 P(x)>((x-1)^2-1)^2 is equivalent to 18 ( x 1 ) 2 > 0 18(x-1)^2>0 . The inequality P ( x ) < x 4 P(x)<x^4 is equivalent to 4 x 3 + 36 x > 22 x 2 + 18 4x^3+36x>22x^2+18 . Applying AM-GM inequality (or using squares are nonnegative) on the LHS gives 4 x 3 + 36 x 24 x 2 > 22 x 2 + 18 4x^3+36x\ge 24x^2> 22x^2+18 for all integers x > 3 x>3 . So checking x = 1 , 2 , 3 x=1,2,3 only gives perfect squares P ( x ) = 1 , 81 P(x)=1, 81 when x = 1 , x = 3 x=1, x=3 , hence the answer is 1 + 3 = 4 1+3=\boxed{4} .

Here for a similar problem.

Yong See Foo - 6 years, 1 month ago
Gamal Sultan
Apr 19, 2015

Let the given expression be denoted by K^2

Then

x^4 - 4 x^3 + 22 x^2 - 36 x + 18 = K^2 ......................................... (1)

We can put the given expression (just to obtain x^4 - 4 x^3) in the form

(x^2 - 2 x + b)^2 + m = K^2 .................................................................(2)

Then

x^4 - 4 x^3 + (4 + 2 b) x^2 - 4 b x + (b^2 + m) = K^2 ..................(3)

Comparing the coefficients of the power of x in (1), (3) , we get

b = 9 , m = 63

Then Eq (2) can be put in the form

(x^2 - 2 x + 9)^2 - K^2 = 63

(x^2 - 2 x + 9 + K)(x^2 - 2 x + 9 - K) = 63

(y + K)(y - K) = 63 , where

y = x^2 - 2 x + 9 ............................................................................................(4)

Then we have

(y + K)(y - K) = 1 X 63 = 63 X 1 = 3 X 21 = 21 X 3 = 7 X 9 = 9 X 7

Then

y + K = 1 , y - K = 63 or y + K = 63 , y - K = 1 .Then y = 32 ......... (5)

OR

y + K = 3 , y - K = 21 or y + K = 21 , y - K = 3 .Then y = 12 ..........(6)

OR

y + K = 7 , y - K = 9 or y + K = 9 , y - K = 7 .Then y = 8 ..................(7)

From (4) , (5) we get

x^2 - 2 x - 23 = 0 ............refused because x is not a positive integer

From (4) , (6) we get

x^2 - 2 x - 3 = 0 , then x = 3 , x = -1 (refused)

From (4) , (7) we get

x^2 - 2 x + 1 = 0 , then x = 1

The sum = 3 + 1 = 4

Aaghaz Mahajan
Feb 28, 2018

Solved it like @Nihar Mahajan ..... Just factorized it as (x-1)^4 + 16(x-1)^2 + 1 and then used SFFT..... Great Question btw..!!!

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...