x 4 − 4 x 3 + 2 2 x 2 − 3 6 x + 1 8
Find sum of all positive integer values of x such that the expression above is a perfect square.
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Great job!
Good solution. But it can be done easily with Vieta's formula right?
"x1+x2+x3+x4=-b/a."
Log in to reply
No. Vieta's formula finds the sum of all roots, including those which are complex, or fractions, or negative integers, or repeated roots with multiplicity.
For example, x 4 − 4 x 3 + 2 2 x 2 − 3 6 x + 1 8 = 1 has the repeated root 1, and the complex roots 1 + 4 i , 1 − 4 i . The contribution to the "positive integer roots" is just 1.
Log in to reply
Oh... the question only asked for integer sum so we can not apply Vieta's formula for this cases. How about Nihar reply? He saids that the expressions must be equal to zero. Correct me if i wrong.
Log in to reply
@Hafizh Ahsan Permana – Sorry , that was my misconception earlier.
Can't we just find the intersection of y=x⁴-4x³+22x²-36x+18 & y=x² Cause I did it that way in two steps
Why 18 is taken as 81-63?why not any other perfect square?
Log in to reply
So that a 2 + 1 8 x + 8 1 becomes a perfect square.
Let's find a perfect square ( x 2 + b x + c ) 2 that approximates the given polynomial p ( x ) well. We let b = − 2 to generate the term − 4 x 3 and then c = 9 to get the term 2 2 x 2 . We find that ( x 2 − 2 x + 9 ) 2 − p ( x ) = 6 3 . It is a straightforward algebra exercise to verify that ( x 2 − 2 x + 8 ) 2 < p ( x ) for x > 1 + 2 6 . Being trapped between two consecutive perfect squares, p ( x ) cannot be a perfect square for x > 5 . We test the cases x = 1 , . . . , 5 to find that p ( 1 ) = 1 and p ( 3 ) = 8 1 .
@Otto Bretscher Great solution sir.....short, crisp and correct......+1.......As a side note, sir could you guide me on some tips to solving problems quickly.....unlike you, I solve a problem succesfully, but take a longer path.......pls help
nice solution, i got lucky and tried to calculate f(g(x)), where g(x)=x+1. it turns out to be a nice polynomial (x^4+16x^2+1) and then change it to (x^2+8x)^2-63
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 |
|
Output-
1.0
3.0
Answer - 4
Using Octave (Matlab), after 10,000 (10000:100000 to be specific) my function timed out but was able to find the following:
Columns 1 through 10:
19491 19499 19507 19515 19523 19531 19539 19547 19555 19563
Columns 11 through 20:
19571 19579 19587 19595 19603 19611 19619 19627 19635 19643
Columns 21 through 30:
19651 19659 19667 19675 19683 19691 19699 19707 19715 19723
Columns 31 through 40:
19731 19739 19747 19755 19763 19771 19779 19787 19795 19803
Columns 41 through 50:
19811 19819 19827 19835 19843 19851 19859 19867 19875 19883
Columns 51 through 60:
19891 19899 19907 19915 19923 19931 19939 19947 19955 19963
Columns 61 through 70:
19971 19979 19987 19995 20003 20011 20019 20027 20035 20043
Columns 71 through 80:
20051 20059 20067 20075 20083 20091 20099 20107 20115 20123
Columns 81 through 90:
20131 20139 20147 20155 20163 20171 20179 20187 20195 20203
Columns 91 through 100:
20211 20219 20227 20235 20243 20251 20259 20267 20275 20283
Columns 101 through 110:
20291 20299 20307 20315 20323 20331 20339 20347 20355 20363
Columns 111 through 120:
20371 20379 20387 20395 20403 20411 20419 20427 20435 20443
Columns 121 through 130:
20451 20459 20467 20475 20483 20491 20499 20507 20515 20523
Columns 131 through 140:
20531 20539 20547 20555 20563 20571 20579 20587 20595 20603
Columns 141 through 150:
20611 20619 20627 20635 20643 20651 20659 20667 20675 20683
Columns 151 through 160:
20691 20699 20707 20715 20723 20731 20739 20747 20755 20763
Columns 161 through 170:
20771 20779 20787 20795 20803 20811 20819 20827 20835 20843
Columns 171 through 180:
20851 20859 20867 20875 20883 20891 20899 20907 20915 20923
Columns 181 through 190:
20931 20939 20947 20955 20963 20971 20979 20987 20995 21003
Columns 191 through 200:
21011 21019 21027 21035 21043 21051 21059 21067 21075 21083
Columns 201 through 210:
21091 21099 21107 21115 21123 21131 21139 21147 21155 21163
Columns 211 through 220:
21171 21179 21187 21195 21203 21211 21219 21227 21235 21243
Columns 221 through 230:
21251 21259 21267 21275 21283 21291 21299 21307 21315 21323
Columns 231 through 240:
21331 21339 21347 21355 21363 21371 21379 21387 21395 21403
Columns 241 through 250:
21411 21419 21427 21435 21443 21451 21459 21467 21475 21483
Columns 251 through 260:
21491 21499 21507 21515 21523 21531 21539 21547 21555 21563
Columns 261 through 270:
21571 21579 21587 21595 21603 21611 21619 21627 21635 21643
Columns 271 through 280:
21651 21659 21667 21675 21683 21691 21699 21707 21715 21723
Columns 281 through 290:
21731 21739 21747 21755 21763 21771 21779 21787 21795 21803
Columns 291 through 300:
21811 21819 21827 21835 !!! PAYLOAD TOO LARGE !!!
21843 21851 21859 21867 21875 21883
Columns 301 through 310:
21891 21899 21907 21915 21923 21931 21939 21947 21955 21963
Columns 311 through 320:
21971 21979 21987 21995 22003 22011 22019 22027 22035 22043
Columns 321 through 330:
22051 22059 22067 22075 22083 22091 22099 22107 22115 22123
Columns 331 through 340:
22131 22139 22147 22155 22163 22171 22179 22187 22195 22203
Columns 341 through 350:
22211 22219 22227 22235 22243 22251 22259 22267 22275 22283
Columns 351 through 360:
22291 22299 22307 22315 22323 22331 22339 22347 22355 22363
Columns 361 through 370:
22371 22379 22387 22395 22403 22411 22419 22427 22435 22443
Columns 371 through 380:
22451 22459 22467 22475 22483 22491 22499 22507 22515 22523
Columns 381 through 390:
22531 22539 22547 22555 22563 22571 22579 22587 22595 22603
Columns 391 through 400:
22611 22619 22627 22635 22643 22651 22659 22667 22675 22683
Columns 401 through 410:
22691 22699 22707 22715 22723 22731 22739 22747 22755 22763
Columns 411 through 420:
22771 22779 22787 22795 22803 22811 22819 22827 22835 22843
Columns 421 through 430:
22851 22859 22867 22875 22883 22891 22899 22907 22915 22923
Columns 431 through 440:
22931 22939 22947 22955 22963 22971 22979 22987 22995 23003
Columns 441 through 450:
23011 23019 23027 23035 23043 23051 23059 23067 23075 23083
Columns 451 through 460:
23091 23099 23107 23115 23123 23131 23139 23147 23155 23163
Columns 461 through 470:
23172 23173 23175 23176 23177 23179 23181 23188 23189 23191
Columns 471 through 480:
23193 23195 23197 23204 23205 23207 23208 23209 23211 23213
Columns 481 through 490:
23220 23221 23223 23225 23227 23229 23236 23237 23239 23240
Columns 491 through 500:
23241 23243 23245 23252 23253 23255 23257 23259 23261 23268
Columns 501 through 510:
23269 23271 23272 23273 23275 23277 23284 23285 23287 23289
Columns 511 through 520:
23291 23293 23300 23301 23303 23304 23305 23307 23309 23316
Columns 521 through 530:
23317 23319 23321 23323 23325 23332 23333 23335 23336 23337
Columns 531 through 540:
23339 23341 23348 23349 23351 23353 23355 23356 23357 23364
Columns 541 through 550:
23365 23367 23368 23369
I realize the formatting for that isn't the greatest, but it is an accurate list, trying these values works. Running the same program from 1 to 10000 shows only 1 and 3.
Log in to reply
I believe all the "solutions" listed are artifacts of the number of digits of precision of the calculator program. It is too laborious to calculate long hand, but unnecessary, I think. If we make the substitution y=x-1 to find the reduced quartic, the original equation becomes:
y^4 + 16 y^2 + 1 = k^2, where k is some arbitrary natural number.
Solutions for y^2 can easily be found using the quadratic formula:
y^2 = -8 + sqrt(k^2 + 63), since y^2 can't be negative
The difference between k^2 and (k+1)^2 is 2k+1. So for any value of k greater than 31 the difference to the next perfect square is greater than 63, and the radical cannot be integral. The RHS must also be a perfect square less than 24, which can only be 0, 1, 4, 9, or 16. Therefore, y can only = 0, 1, 2, 3, or 4, and x = 1, 2, 3, 4, or 5. Corresponding values of k are only integral for x = 1 or 3. This illustrates one of the hazards of testing for equality with a finite number of bits.
very good ,, intelligent way
I remember a really similar problem that just appeared recently: same idea, just bound it between two consecutive perfect squares, then the original expression cannot be a square. Let the given polynomial be P ( x ) (because I'm lazy), and note that the inequality P ( x ) > ( ( x − 1 ) 2 − 1 ) 2 is equivalent to 1 8 ( x − 1 ) 2 > 0 . The inequality P ( x ) < x 4 is equivalent to 4 x 3 + 3 6 x > 2 2 x 2 + 1 8 . Applying AM-GM inequality (or using squares are nonnegative) on the LHS gives 4 x 3 + 3 6 x ≥ 2 4 x 2 > 2 2 x 2 + 1 8 for all integers x > 3 . So checking x = 1 , 2 , 3 only gives perfect squares P ( x ) = 1 , 8 1 when x = 1 , x = 3 , hence the answer is 1 + 3 = 4 .
Here for a similar problem.
Let the given expression be denoted by K^2
Then
x^4 - 4 x^3 + 22 x^2 - 36 x + 18 = K^2 ......................................... (1)
We can put the given expression (just to obtain x^4 - 4 x^3) in the form
(x^2 - 2 x + b)^2 + m = K^2 .................................................................(2)
Then
x^4 - 4 x^3 + (4 + 2 b) x^2 - 4 b x + (b^2 + m) = K^2 ..................(3)
Comparing the coefficients of the power of x in (1), (3) , we get
b = 9 , m = 63
Then Eq (2) can be put in the form
(x^2 - 2 x + 9)^2 - K^2 = 63
(x^2 - 2 x + 9 + K)(x^2 - 2 x + 9 - K) = 63
(y + K)(y - K) = 63 , where
y = x^2 - 2 x + 9 ............................................................................................(4)
Then we have
(y + K)(y - K) = 1 X 63 = 63 X 1 = 3 X 21 = 21 X 3 = 7 X 9 = 9 X 7
Then
y + K = 1 , y - K = 63 or y + K = 63 , y - K = 1 .Then y = 32 ......... (5)
OR
y + K = 3 , y - K = 21 or y + K = 21 , y - K = 3 .Then y = 12 ..........(6)
OR
y + K = 7 , y - K = 9 or y + K = 9 , y - K = 7 .Then y = 8 ..................(7)
From (4) , (5) we get
x^2 - 2 x - 23 = 0 ............refused because x is not a positive integer
From (4) , (6) we get
x^2 - 2 x - 3 = 0 , then x = 3 , x = -1 (refused)
From (4) , (7) we get
x^2 - 2 x + 1 = 0 , then x = 1
The sum = 3 + 1 = 4
Solved it like @Nihar Mahajan ..... Just factorized it as (x-1)^4 + 16(x-1)^2 + 1 and then used SFFT..... Great Question btw..!!!
Problem Loading...
Note Loading...
Set Loading...
x 4 − 4 x 3 + 2 2 x 2 − 3 6 x + 1 8 = x 4 − 4 x 3 + 4 x 2 + 1 8 x 2 − 3 6 x + 1 8 = ( x 2 − 2 x ) 2 + 1 8 ( x 2 − 2 x ) + 1 8
Let the expression be equal to y 2 , x 2 − 2 x = a where y ∈ W :
a 2 + 1 8 a + 1 8 = y 2 a 2 + 1 8 a + 8 1 − 6 3 = y 2 ( a + 9 ) 2 − 6 3 = y 2 ( a + 9 − y ) ( a + 9 + y ) = 6 3
We can get pairs: ( a + 9 − y , a + 9 + y ) = ( 1 , 6 3 ) , ( 3 , 2 1 ) , ( 7 , 9 )
⇒ ( a , y ) = ( 2 3 , 3 1 ) , ( 3 , 9 ) , ( − 1 , 1 )
When a = 2 3 ⇒ x 2 − 2 x − 2 3 = 0 which does not fetch integer roots.
When a = 3 ⇒ x 2 − 2 x = 3 ⇒ ( x − 3 ) ( x + 1 ) = 0 which gives us 3 as one of required roots.
When a = − 1 ⇒ x 2 − 2 x = − 1 ⇒ ( x − 1 ) 2 = 0 which gives us 1 as one of the requred roots.
Hence sum = 1 + 3 = 4