Is this possible?

If

a + b = 4 a+b=4

a 3 + b = 5 \sqrt [ 3 ]{ a } +b=5

a + b 3 = 6 a+\sqrt [ 3 ]{ b } =6

and a 2 3 + b 2 3 = x { a }^{ \frac { 2 }{ 3 } }+{ b }^{ \frac { 2 }{ 3 } }=x is true,

Find 1000 x \left\lfloor 1000x \right\rfloor

If you think there is no solution, enter 567.


The answer is 567.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

It is given that: { a + b = 4 . . . ( 1 ) a 1 3 + b = 5 . . . ( 2 ) a + b 1 3 = 6 . . . ( 3 ) \begin{cases} a + b = 4 & ...(1) \\ a^{\frac{1}{3}} + b = 5 & ...(2) \\ a + b^{\frac{1}{3}} = 6 & ...(3) \end{cases}

( 2 ) + ( 3 ) ( 1 ) : a 1 3 + b 1 3 = 7 . . . ( 4 ) a 2 3 + b 2 3 = x . . . ( 5 ) ( a 1 3 + b 1 3 ) 2 2 ( a b ) 1 3 = x 7 2 2 ( a b ) 1 3 = x ( 4 ) ( a b ) 1 3 = 49 x 2 . . . ( 6 ) \begin{aligned} (2)+(3)-(1): \quad a^{\frac{1}{3}} + b^{\frac{1}{3}} & = 7 \quad ...(4) \\ a^{\frac{2}{3}} + b^{\frac{2}{3}} & = x \quad ...(5) \\ \Rightarrow \left(\color{#3D99F6}{a^{\frac{1}{3}} + b^{\frac{1}{3}}}\right)^2 - 2 \left(ab\right)^{\frac{1}{3}} & = x \\ \color{#3D99F6}{7}^2 - 2 \left(ab\right)^{\frac{1}{3}} & = x \quad \quad \small \color{#3D99F6}{(4)} \\ \Rightarrow \left(ab\right)^{\frac{1}{3}} & = \frac{49-x}{2} \quad ...(6) \end{aligned}

( 1 ) : a + b = 4 ( a 1 3 + b 1 3 ) ( a 2 3 + b 2 3 ( a b ) 1 3 ) = 4 7 ( x 49 x 2 ) = 4 ( 4 ) , ( 5 ) , ( 6 ) 14 x 343 + 7 x = 8 x = 351 21 = 16.71428571 1000 x = 16714 \begin{aligned} (1): \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad a + b & = 4 \\ \left(\color{#3D99F6}{a^{\frac{1}{3}} + b^{\frac{1}{3}}}\right) \left(\color{#D61F06}{a^{\frac{2}{3}} + b^{\frac{2}{3}}} - \color{#20A900}{\left(ab\right)^{\frac{1}{3}}}\right) & = 4 \\ \color{#3D99F6}{7} \left(\color{#D61F06}{x} - \color{#20A900}{\frac{49-x}{2}}\right) & = 4 \quad \quad \small \color{#3D99F6}{(4)}, \space \color{#D61F06}{(5)}, \space \color{#20A900}{(6)} \\ 14x - 343 + 7x & = 8 \\ \Rightarrow x & = \frac{351}{21} = 16.71428571 \\ \Rightarrow \lfloor 1000x \rfloor & = \boxed{16714} \end{aligned}

intended solution to solve this! +1!

Joel Yip - 5 years, 3 months ago
Jon Haussmann
Mar 14, 2016

From the given equations, a 3 + b 3 = 7. \sqrt[3]{a} + \sqrt[3]{b} = 7. Cubing this equation, we get a + 3 a 2 b 3 + 3 a b 2 3 + b = 343. a + 3 \sqrt[3]{a^2 b} + 3 \sqrt[3]{ab^2} + b = 343. We know that a + b = 4 a + b = 4 and 3 a 2 b 3 + 3 a b 2 3 = 3 a b 3 ( a 3 + b 3 ) = 21 a b 3 3 \sqrt[3]{a^2 b} + 3 \sqrt[3]{ab^2} = 3 \sqrt[3]{ab} (\sqrt[3]{a} + \sqrt[3]{b}) = 21 \sqrt[3]{ab} , so a b 3 = 343 4 21 = 113 7 . \sqrt[3]{ab} = \frac{343 - 4}{21} = \frac{113}{7}.

Squaring the equation a 3 + b 3 = 7 \sqrt[3]{a} + \sqrt[3]{b} = 7 , we get a 2 3 + 2 a b 3 + b 2 3 = 49 , \sqrt[3]{a^2} + 2 \sqrt[3]{ab} + \sqrt[3]{b^2} = 49, so a 2 3 + b 2 3 = 49 2 113 7 = 117 7 . \sqrt[3]{a^2} + \sqrt[3]{b^2} = 49 - 2 \cdot \frac{113}{7} = \frac{117}{7}. This appears to give an answer to the problem, but there is more to the story.

Squaring this equation, we get a a 3 + 2 a 2 b 2 3 + b b 3 = 13689 49 , a \sqrt[3]{a} + 2 \sqrt[3]{a^2 b^2} + b \sqrt[3]{b} = \frac{13689}{49}, so a a 3 + b b 3 = 13689 49 2 ( 113 7 ) 2 = 11849 49 . a \sqrt[3]{a} + b \sqrt[3]{b} = \frac{13689}{49}- 2 \left( \frac{113}{7} \right)^2 = -\frac{11849}{49}.

But multiplying the equations a 3 + b = 5 \sqrt[3]{a} + b = 5 and a + b 3 = 6 a + \sqrt[3]{b} = 6 , we get ( a 3 + b ) ( a + b 3 ) = 30 , (\sqrt[3]{a} + b)(a + \sqrt[3]{b}) = 30, so a a 3 + b b 3 + a b + a b 3 = 30. a \sqrt[3]{a} + b \sqrt[3]{b} + ab + \sqrt[3]{ab} = 30. Hence, a a 3 + b b 3 = 30 113 7 ( 113 7 ) 3 = 1438144 343 . a \sqrt[3]{a} + b \sqrt[3]{b} = 30 - \frac{113}{7} - \left( \frac{113}{7} \right)^3 = -\frac{1438144}{343}. This value is different from above, so the given system has no solutions, and the "answer" to the problem is 567.

cant understand the last part

Joel Yip - 5 years, 2 months ago
Joel Yip
Mar 4, 2016

( a 3 + b ) + ( a + b 3 ) ( a + b ) = 7 \left( \sqrt [ 3 ]{ a } +b \right) +\left( a+\sqrt [ 3 ]{ b } \right) -\left( a+b \right) =7

a 3 + b 3 = 7 \sqrt [ 3 ]{ a } +\sqrt [ 3 ]{ b } =7

a + b = ( a 3 + b 3 ) ( a 2 3 + b 2 3 + a b 3 ) a+b=\left( \sqrt [ 3 ]{ a } +\sqrt [ 3 ]{ b } \right) \left( { a }^{ \frac { 2 }{ 3 } }+{ b }^{ \frac { 2 }{ 3 } }+\sqrt [ 3 ]{ ab } \right)

4 = 7 ( x + a b ) 4=7\left( x+\sqrt { ab } \right)

( a 3 + b 3 ) 2 = ( a 2 3 + b 2 3 + a b ) { \left( \sqrt [ 3 ]{ a } +\sqrt [ 3 ]{ b } \right) }^{ 2 }=\left( { a }^{ \frac { 2 }{ 3 } }+{ b }^{ \frac { 2 }{ 3 } }+\sqrt { ab } \right)

49 = ( x + 2 a b ) 49=\left( x+2\sqrt { ab } \right)

4 7 = x a b \frac { 4 }{ 7 } =x-\sqrt { ab }

8 7 = 2 x 2 a b \frac { 8 }{ 7 } =2x-2\sqrt { ab }

8 7 + 49 = 2 x 2 a b + ( x + 2 a b ) \frac { 8 }{ 7 } +49=2x-2\sqrt { ab } +\left( x+2\sqrt { ab } \right)

351 7 = 3 x \frac { 351 }{ 7 } =3x

117 7 = x \frac { 117 }{ 7 } =x

so enter 16714

OR

s u b m = a 3 ; s u b n = b 3 t h e n m 3 + n 3 = 4 m + n 3 = 5 m 3 + n = 6 m 2 + n 2 = x m 3 + n 3 + m + n = 11 m + n = 7 ( m + n ) 3 = 7 3 m 3 + n 3 + 3 m n ( m + n ) = 343 4 + 3 m n ( 7 ) = 343 m n = 113 7 s i n c e x = m 2 + n 2 = ( m + n ) 2 2 m n = ( 7 ) 2 2 ( 113 7 ) = 117 7 h e n c e , 1000 x = 16714 sub\quad m=\sqrt [ 3 ]{ a } ;sub\quad n=\sqrt [ 3 ]{ b } \\ then\\ { m }^{ 3 }+{ n }^{ 3 }=4\\ m+{ n }^{ 3 }=5\\ { m }^{ 3 }+{ n }=6\\ { m }^{ 2 }+{ n }^{ 2 }=x\\ { m }^{ 3 }+{ n }^{ 3 }+m+n=11\\ m+n=7\\ { \left( m+n \right) }^{ 3 }={ 7 }^{ 3 }\\ { m }^{ 3 }+{ n }^{ 3 }+3mn(m+n)=343\\ 4+3mn(7)=343\\ mn=\frac { 113 }{ 7 } \\ since\quad x={ m }^{ 2 }+{ n }^{ 2 }\\ \qquad \qquad ={ (m+n) }^{ 2 }-2mn\\ \qquad \qquad ={ (7) }^{ 2 }-2\left( \frac { 113 }{ 7 } \right) \\ \qquad \qquad =\frac { 117 }{ 7 } \\ hence,\\ \left\lfloor 1000x \right\rfloor =16714

Plesse repeat this solution So i can easily understand it!

Atanu Ghosh - 5 years, 3 months ago

Log in to reply

please know that i have put in effort and i am very tired now

Joel Yip - 5 years, 3 months ago

Log in to reply

When you feel free and Relax, then please help me to make me understand.

Atanu Ghosh - 5 years, 3 months ago

Log in to reply

@Atanu Ghosh alright then

Joel Yip - 5 years, 3 months ago

@Atanu Ghosh now you undrstand?

Joel Yip - 5 years, 3 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...