Isosceles triangle pt.2

Geometry Level 4

A B C ABC is an isosceles triangle with A C = B C AC=BC and has an angle A C B = 10 8 ACB=108^\circ .
If the ratio of A B B C \dfrac{AB}{BC} can be represented as a + b c \dfrac{a+\sqrt{b}}{c} , where a , b a,b and c c positive integers with b b square-free, find a + b + c a+b+c .

Bonus : Try to do this without trigonometry.


The answer is 8.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Ahmad Saad
Jul 21, 2016

<ACB=108 ---> <CAB=<CBA=36 , sin108 = sin72 = 2sin36.cos36

AB/BC = sin108/sin36 = 2cos36 , cos36=(1+sqrt5)/4 .... it is easy to prove that.

AB/BC = (1+sqrt5)/2 ---> a=1 , b=5 & c=2 ---> a+b+c = 8

Anther solution without using Trigonometry

I've submitted another solution (without using trigonometry) to above my first.

Ahmad Saad - 4 years, 10 months ago

@ahmad saad nice solution ;;))

Dragan Marković - 4 years, 10 months ago

how did you get it as 2cos36

abhishek alva - 4 years, 10 months ago

Log in to reply

AB/BC=sin{ACB}/sin{CAB}=sin{108}/sin{36}=sin{180-72}/sin{36}=sin{72}/sin{36}

        = 2*sin{36}.cos{36}/sin{36}=2*cos{36}  .... (sinse, sin{36} =/= 0)

Ahmad Saad - 4 years, 10 months ago

Log in to reply

sin (180-72)=cos 72

abhishek alva - 4 years, 10 months ago

Log in to reply

@Abhishek Alva No, the correct identity is : sin(180-72)=sin72 & cos72=sin(90-72)

Ahmad Saad - 4 years, 10 months ago

U s i n g S i n L a w : B C S i n 36 = A B S i n 108 = A B S i n ( 3 36 ) = A B S i n 36 ( 3 4 S i n 2 36 ) . B u t S i n 36 = 5 5 8 A B B C = 3 5 5 2 = 1 + 5 2 = a + b c . a + b + c = 1 + 5 + 2 = 8. Using~Sin~ Law:-\\ \dfrac {BC}{Sin36}=\dfrac {AB}{Sin108}=\dfrac {AB}{Sin(3*36)}=\dfrac {AB}{Sin36*(3-4*Sin^2 36)}.\\ But~Sin36=\sqrt{\dfrac{5-\sqrt5} 8}\\ \therefore~ \dfrac {AB}{BC}=3- \dfrac{5-\sqrt5} 2=\dfrac {1 +\sqrt5} 2 =\dfrac {a +\sqrt b} c.\\ \implies~a+b+c=1+5+2=\Large \color{#D61F06}{8}.
O R OR \\
L e t C F A B . C A B = 3 6 o , a n d A F = 1 2 A B . 1 2 A B C A = A F C A = C A C o s C A B = C A C o s 36 = C A 1 + 5 4 . A B C A = 1 + 5 2 = a + b c . a + b + c = 1 + 5 + 2 = 8. Let~ CF~\bot~ AB.~~\angle~CAB=36^o, ~and~ AF=\frac 1 2*AB.\\ \dfrac {\frac 1 2 *AB}{CA}=\dfrac {AF}{CA}=CA* CosCAB=CA *Cos36=CA * \dfrac{1+\sqrt5} 4.\\ \implies~\dfrac {AB}{CA}=\dfrac{1+\sqrt5} 2=\dfrac {a +\sqrt b} c.\\ \implies~a+b+c=1+5+2=\Large \color{#D61F06}{8}.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...