It's a perfect square

Algebra Level 3

Find the value of log a 2 9 \log_a 2^9 where a = 3 + 2 2 + 3 2 2 a = \sqrt{3 + 2\sqrt{2}} + \sqrt{3 - 2\sqrt{2}} .


The answer is 6.000.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Rohit Udaiwal
Dec 24, 2015

3 + 2 + 3 2 2 = ( 2 + 1 ) 2 + ( 2 1 ) 2 = 2 + 1 + 2 1 = 2 2 a = 2 2 \sqrt{3+\sqrt2}+\sqrt{3-2\sqrt2} \\ =\sqrt{(\sqrt2+1)^2}+\sqrt{(\sqrt2-1)^2}=\sqrt2+1+\sqrt2-1\\ =2\sqrt2 \\ \therefore \color{#20A900}{a}=\color{#20A900}{2\sqrt2} Now, log 2 2 2 9 = 9 log 2 3 2 2 = 9 2 3 log 2 2 = 6 . \log_{\color{#20A900}{2\sqrt2}}{2^9}=9\log_{\color{#20A900}{2^{\frac{3}{2}}}}{2} \\ =\dfrac{9\cdot2}{3}\log_{2}{2} \\ =\boxed{6}.


Note : log a b c = c log a b \large{\log_{a}{b^c}=c\log_{a}{b}} and log a c b = 1 c log a b . \large{\log_{a^c}{b}=\dfrac{1}{c}\log_{a}{b}}.

Akhil Bansal
Dec 24, 2015

Since,
3 + 2 2 + 3 2 2 = ( 2 + 1 ) 2 + ( 2 1 ) 2 = 2 + 1 + 2 1 = 2 2 \large \begin{aligned} \sqrt{3+2\sqrt{2}} + \sqrt{3- 2\sqrt{2}} = \sqrt{(\sqrt{2} + 1)^2} +\sqrt{(\sqrt{2} - 1)^2} \\ = \sqrt{2} + 1 + \sqrt{2} - 1 = \color{#3D99F6}{2\sqrt{2}}\end{aligned}

log a 2 9 = log 2 2 2 9 = 9 3 / 2 log 2 2 = 6 \large \log_{\color{#3D99F6}{a}} 2^9 = \log_{2\sqrt{2}} 2^9 = \dfrac{9}{3/2}\log_2 2 = \boxed{6}


Note : log a b c d = d b log a c ; log a a = 1 \large \log_{a^b} c^d = \dfrac{d}{b} \log_a c \quad ; \quad \log_a a = 1

why can't it be 1+root2 whole square instead of root2 + 1 whole square?

Anupam Shandilya - 5 years, 5 months ago

Log in to reply

( 1 + 2 ) 2 = ( 2 + 1 ) 2 (1 + \sqrt{2})^2 = (\sqrt{2} + 1)^2
( 1 2 ) 2 = ( 2 1 ) 2 (1 - \sqrt{2})^2 = (\sqrt{2} - 1)^2

So, you can write it in any way.

Akhil Bansal - 5 years, 5 months ago

Log in to reply

but if you take 1-root2 instead of root2 -1 in the above question then answer will be affected

Anupam Shandilya - 5 years, 5 months ago

Log in to reply

@Anupam Shandilya Because we know .. a must be greater than b

Irvine Dwicahya - 5 years, 5 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...